首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Assembly of Sn on Cu Nanorods as anode for Li-ion microbatteries was prepared by a two-step electrodeposition design. Firstly, Cu nanorods arrays were grown on copper substrate by anodic aluminum oxide template-assisted growth method. Then, Sn was deposited onto Cu nanorods arrays by galvanostatic deposition. X-ray diffraction and scanning electron microscopy measurements reveal that Cu nanorod arrays are covered with Sn. Electrochemical performances of prepared electrodes were evaluated by charge/discharge cycle measurement. The assembly of Sn on Cu nanorods electrode exhibited highly reversible specific capacity and superior capacity retention resulting from the three-dimensionally nano-architectured design, which exhibits a large surface area, shortened Li-ion diffusion distance, Cu–Sn alloying, and can accommodate the volume expansion of Sn during cycling. Deposition time is an important parameter for fabricating the assembly of Sn on Cu nanorods electrode with suitable structure and morphology.

  相似文献   

2.
A novel method is presented for determination of heavy metal ions in a high-saline matrix. It is based on the electrodeposition of the ions and subsequent laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Three arrangements for electrodeposition were worked out, two of them with stationary working electrodes. Materials for use in the working electrodes, and conditions for electrodeposition of Cd, Cr and Cu (pH, deposition current, time of electrolysis) were studied. Nickel was found to be the best electrode material. The metals accumulate on the surface of electrode and were then evaporated/ablated with a Nd:YAG laser focused into the ICP-OES spectrometer. The detection limits are 0.13 mg?L?1 for Cd, 0.15 mg?L?1 for Cu, and 1.9 mg?L?1 for Cr in case of a stationary bottom working electrode, and 0.25 mg?L?1 for Cd, 0.05 mg?L?1 for Cu, 0.8 mg?L?1 for Cr when using a rotating electrode. The relative standard deviation is in range from 3.8 to 10.3%. Waste water was analyzed in this way by the standard addition method.  相似文献   

3.
Assembly of Sn on Cu Nanorods as anode for Li-ion microbatteries was prepared by a two-step electrodeposition design. Firstly, Cu nanorods arrays were grown on copper substrate by anodic aluminum oxide template-assisted growth method. Then, Sn was deposited onto Cu nanorods arrays by galvanostatic deposition. X-ray diffraction and scanning electron microscopy measurements reveal that Cu nanorod arrays are covered with Sn. Electrochemical performances of prepared electrodes were evaluated by charge/discharge cycle measurement. The assembly of Sn on Cu nanorods electrode exhibited highly reversible specific capacity and superior capacity retention resulting from the three-dimensionally nano-architectured design, which exhibits a large surface area, shortened Li-ion diffusion distance, Cu?CSn alloying, and can accommodate the volume expansion of Sn during cycling. Deposition time is an important parameter for fabricating the assembly of Sn on Cu nanorods electrode with suitable structure and morphology.  相似文献   

4.
LaNi1???x Cu x O3 (x?=?0.05, 0.10, 0.30) coated electrodes were prepared by brush painting using Ni foam substrates in order to increase its active surface area. For comparison, coatings with x?=?0.05 were also prepared using vitreous carbon substrates. Cyclic voltammetry was used to evaluate the coating roughness (R f). Values between 5,145?±?148 and 6,334?±?277 were obtained, depending on the x value, for the coatings on Ni foam. These results show that the electrodes prepared with LaNi1???x Cu x O3 powder, obtained at 600 °C, lead to a big increase on the oxide electrode roughness when compared with LaNiO3 electrodes prepared by a similar method. Much lower values were obtained for the coatings on vitreous carbon indicating that the substrate nature is also a key factor for the preparation of high surface area electrodes. The calculated kinetic parameters for the oxygen evolution reaction (OER) show that the partial replacement of Ni by Cu has no beneficial effect on the intrinsic catalytic activity of the coatings. On the other hand, a big increase on the active area is observed even for small amounts of Cu (x?=?0.05), leading to a better overall OER performance for the LaNi0.95Cu0.05O3 coating on Ni foam. For this composition, the activity is dominated by geometric effects.  相似文献   

5.
《Analytical letters》2012,45(17):3058-3073
Abstract

Copper(Cu) and nickel(Ni) complexes of para-tolualdehydesemicarbazone (pTSC) were used as carrier for an thiocyanate ion–selective electrode. The Ni(II)pTSC demonstrated higher selectivity for thiocyanate ions with better performance than Cu(II)pTSC as carrier. The electrode shows a Nernstian slope of 58.8 ± 0.3 mV decade?1 with improved linear range of 1 × 10?2 to 1 × 10?7 M and a low detection limit of 1.25 × 10?7 M in the pH range of 3–10, giving a relatively fast response and reversibility within 10 s. The selectivity coefficient was calculated using matched potential method. The electrode worked well for nearly 3 months. The response mechanism is discussed by UV-visible spectroscopic technique. The electrodes were used in potentiometric titration of thiocyanate with silver nitrate. Further, the electrode was successfully applied to determine the thiocyanate content in physiological fluids.  相似文献   

6.
Two types of nonbreakable, flexible micro-reference electrodes filled with gel-electrolytes were prepared for use in solutions with alkaline and neutral pH. The electrodes are intended for electrochemical measurements, in which chloride-free conditions are important. Due to the flexible, bendable construction of the electrodes, electrochemical experiments at locations difficult to access with common reference electrodes are enabled. Hg|HgO-type electrodes were prepared from amalgamated Au wires, followed by oxidation of the amalgam, which is mounted in a PTFE tube filled with 0.1M NaOH solution immobilized in a PAA-g-PEO gel. The potential of this type of electrode was found to be 0.162?±?0.002 V (SHE) at room temperature. Cu|CuSO4 electrodes, consisting of a Cu wire immersed in a saturated CuSO4 solution jellied with gelatin, showed a stable open-circuit potential of 0.312?±?0.001 V (SHE). Further characterization of the electrodes was performed in terms of electrochemical impedance spectroscopy and micro-polarization measurements. As an alternative to the flexible electrodes, rigid electrodes in glass enclosure were fabricated in analogy to the flexible-type electrodes.  相似文献   

7.
Herein, a new polythiophene-coated silicon composite anode material was prepared by in situ chemical oxidation polymerization method. The structure of this material was characterized by infrared spectroscopy, which proved that the oxidative polymerization of thiophene occurred mainly in α position. The polythiophene can provide the better electric contact between silicon particles. Therefore, the as-prepared Si/polythiophene composite electrodes achieve better cycling performance than the bare Si anode. The specific capacity of the composite electrode retains 478 mA h g?1 after 50 cycles.  相似文献   

8.
《Analytical letters》2012,45(11):2151-2160
Abstract

The electrochemical behavior of Cu(II) was investigated on three‐dimensional 3‐mercaptopropionic acid (MPA) assembled on gold nanoparticle‐modified glassy carbon (GNP/GC) electrode. The results demonstrated that the MPA monolayer inhibited the charging current while promoted the response of accumulated Cu(II) on GNP/GC electrode. The effects of pH, scan rate, and accumulation time on the voltammetric behavior of Cu(II) on the MPA/GNP/GC electrode were studied. The MPA modified electrode presented a voltammetric response linearly proportional to the Cu(II) concentration from 0.1 µg/l to 100 µg/l, with a detection limit of 3.2 ng/l. Moreover, this electrode was successfully applied to the determination of Cu(II) in tap water.  相似文献   

9.
《Analytical letters》2012,45(2):369-386
Abstract

Three kinds of transition metal chelates of unsymmetrical tetradentate Schiff base, o‐hydroxybenzophenone‐1,2‐diaminobenzene‐pyrrole‐2‐carbaldehyde(H2L), were synthesized to prepare anion‐selective electrodes and their anion response characteristics were investigated. The results show that the performances of the electrodes are considerably influenced by the nature of the central metals. The proposed electrode with the Cu(II)‐chelate and cationic additive demonstrated an anti‐Hofmeister selectivity sequence with a good selectivity towards thiocyanate in the following order: Thiocyanate>iodide>salicylate>perchlorate>bromide>nitrite>chloride>acetate>fluoride>nitrate>sulfite>sulfate. The electrode had an excellent linear response to thiocyanate from 3.4×10?7 to 1.0×10?1 M in phosphate buffer solution at pH 5.0 with a slope of ?58.7 mV per decade, a detection limit of 1.6×10?7 M, and a fast response time within 5 s over the entire concentration series. Spectroscopic techniques and AC impedance were used to investigate the response mechanism to thiocyanate of the membrane doped with Cu(II)‐chelate. The preliminary application of the electrode for determination of thiocyanate in wastewater and urine samples is reported.  相似文献   

10.
Multi-layered electrodes which consist of polyaniline (PANI)/manganese dioxide (MnO2)-multi-walled carbon nanotubes (MWNTs) are prepared as the electrode materials for supercapacitors. MnO2-MWNTs are made by the in situ direct coating method to deposit MnO2 onto MWNTs; the core/shell structure of multi-layered fibrous electrodes can also be obtained by PANI coating onto the MnO2-MWNTs. The effect of PANI coating on the electrochemical performance and cyclic stability of MnO2-MWNTs is investigated. From the cyclic voltammograms, the PANI/MnO2-MWNTs show remarkably enhanced specific capacitance and cycle stability compared to MnO2-MWNTs, where the highest specific capacitance (350 F/g) is obtained at a current density of 0.2 A/g for the PANI/MnO2-MWNTs as compared to 92 F/g for pristine MWNTs and 306 F/g for MnO2-MWNTs. This indicates that the improved electrochemical performance of PANI/MnO2-MWNTs is due to the enhanced electrical properties by nano-scale-coated MnO2 onto MWNTs and the PANI coating that leads to the increased cycle stability by delaying the dissolution of MnO2 during charge/discharge tests.  相似文献   

11.
The Clˉ anion as the halogen bond acceptor, the diiodotetrafluoroethane I(CF2)2I and its derivatives I(MF2)nI (M = C, Si, Ge, Sn) as the halogen bond donor, and the strong halogen bonds could be formed. The halogen bonds between I(MF2)nI and Clˉ have been designed and investigated by Moller–Plesset perturbation/aug-cc-pVDZ calculations together with the aug-cc-pVDZ-pp basis set for iodine and stannum. The halogen bonds in the I(MF2)nI???Clˉ complexes are strong, which are apparently related to the group IV elements, becoming stronger along the sequence of M = Si, C, Ge, Sn. Accompanied with increasing number (n) of MF2 unit, the halogen bonds (M = Si, Ge, Sn) also become stronger. The energy decomposition analyses reveal that the exchange energy contributes most in forming these halogen-bonded interactions. In the meantime, the electrostatic energy is also a significant factor for the I???Clˉ interactions. The halogen bonds of I(MF2)nI???Clˉ(M = C, Ge, Sn) belong to partial-covalent interactions, while they are noncovalent interactions when M = Si.  相似文献   

12.
The effect of Cu content on structure, hydrogen storage, and electrochemical properties of LaNi4.1-x Co0.6Mn0.3Cu x alloys has been investigated. For sample, A, B, C, and D are used to represent alloys (x?=?0, 0.15, 0.3, and 0.45), respectively. The results indicate that the four alloys are all single-phase alloy with LaNi5 phase of CaCu5 hexagonal structure, the hydrogen storage capacities of the alloy are about 1.49 wt% (A), 1.48 wt% (B), 1.43 wt% (C), and 1.25 wt% (D) at 303 K. With the increase of Cu content (x) from A to D, hydrogen desorption plateau pressure and pressure hysteresis decrease. Alloy electrode A shows better activation property and higher capacity (334.44 mAh/g). The addition of Cu improves the cyclic stability of the alloy electrodes when x?=?0?~?0.45. However, their self-discharge properties and high-rate dischargeability (HRD) decrease with the increase of x. Further, electrochemical kinetics and electrochemical impedance spectroscopy (EIS) analysis show that the reaction of alloy electrode is controlled by charge transfer step, and the adding of Cu benefits the electrode properties in alkaline solution.  相似文献   

13.
Corrosion and kinetics of partial electrode reactions on carbon steel St3 with superhydrophobic coatings of three types were studied in 0.5 M NaCl and 50 g/L NaCl +400 mg/L H2S solutions. The investigations were carried out on electrodes made of carbon steel St3 with a chemical composition, wt. %: C – 0.20; Mn – 0.50; Si – 0.15; P – 0.04; S – 0.05; Cr – 0.30; Ni – 0.20; Cu – 0.20, and Fe – 98.36. To obtain the type I coating, the metal surface was textured by an IR laser radiation of nanosecond duration followed by chemisorption of fluorobutylsilane out of a solution in n-decane. To obtain a coating of type II, a nanoscale composite layer consisting of aggregates of aerosil nanoparticles was applied additionally to the outcome of type I method. To obtain a coating of type III, the metal surface after being textured by the infrared (IR) laser radiation of nanosecond duration was followed by chemisorption of fluoroxy silane. The influence of duration τ of the medium corrosive impact on protective effect of the superhydrophobic coating is considered. It was shown that upon reaching a steady state (after 72 h), the corrosion rate of steel with a superhydrophobic coating of I and II types in a 0.5 M NaCl solution is reduced by 23 ± 3 times compared with unprotected samples. Approximately the same picture is characteristic of electrodes with a coating of type III in a solution of 50 g/L NaCl +400 mg/L H2S.  相似文献   

14.
Nanostructured Ge-doped mesoporous silica powder and thin film were prepared with a cetyltrimethylammonium bromide self-assembled template to investigate the doping effects on the structure and optical properties of mesoporous silica. The X-ray diffraction, transmission electron microscopy and photoluminescence (PL) results suggest that the Ge-doped mesoporous silica with Ge/Si molar ratio of 0.01 was characterized by the strongest PL intensity without phase separation. Worm-like Ge-doped porous silica with specific area up to 987 m2/g could be obtained in this study, in which some Si atoms were replaced by Ge atoms according to the X-ray photoelectron spectroscopy analyses. The PL intensity of mesoporous silica could be increased by germanium-induced oxygen-related defects, but for the samples with Ge/Si molar ratios larger than 0.01, the PL intensity decreased due to the phase separation of germanium oxide.  相似文献   

15.
通过循环伏安法电沉积使直径约为7 nm的Pt纳米粒子均匀地分散于多孔硅表面, 拟用作微型质子交换膜燃料电池的催化电极. 与刷涂法相比较, 电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性. 当Pt载量为0.38 mg•cm−2时, 其电化学活性比表面积高达148 cm2•mg−1, 是刷涂相近质量的纳米Pt/C催化剂的多孔硅电极Pt-C/Si的2倍多;该修饰电极对甲醇氧化也呈现了增强的催化性能和好的稳定性, 在0.5 V(vs SCE)极化1 h后电流密度为4.52 mA•cm−2, 而刷涂了相近Pt量的Pt-C/Si电极的电流密度只有0.36 mA•cm−2.  相似文献   

16.
Designed Graphite-Si/SiOx/C composite electrodes for rechargeable lithium-ion batteries are prepared with different binder of carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR) and polyimide (PI). Electrode performance of composites highly depends on the selection of binder. The Si-based/graphite composite electrode containing PI binder shows very stable cycle stability with the retention higher than 95 % after 30 cycles; however, the capacity of composite electrode with CMC-SBR binder fades to less than 80 % after 20 cycles. The improvement mechanism of PI binder is characterized by SEM, EDS mapping, adhesive strength test, and electric performance test. The surface of anode film does not show crack after several cycles, and the SEI on the surface of Si/SiOx/C particle is characterized. It is found that anode film peeing off strength matches well with the composite cycle stability. This result is further supported with cell disassembly result. We believe that improvement of anode film adhesion strength is an effective way to get stable long cycle life.  相似文献   

17.
Ultrathin ZnO, ZrO2, and Al2O3 surface coatings are deposited via atomic layer deposition (ALD) with high conformality and atomic scale thickness control to enhance the electrochemical performance of LiMn2O4 for applications in lithium ion batteries. Two types of ALD-modified LiMn2O4 electrodes are fabricated: one is ALD-coated LiMn2O4 composite electrode and the other is electrode composed of ALD-coated LiMn2O4 particles and uncoated carbon/polyvinylidenefluoride network. Cycling performance and cyclic voltammetric patterns reveal that ZnO ALD coating is the most effective protective film for improving the electrochemical performance of LiMn2O4 at either 25 or 55 °C, followed by ZrO2 and Al2O3. After 100 electrochemical cycles in 1 C at 55 °C, the electrode consisting of LiMn2O4 particles coated with six ZnO ALD layers (as thin as ~1 nm) delivers the highest final capacity, more than twice that of the bare electrode. It is also found that amphoteric oxide coating on LiMn2O4 particles can enhance the cycleability of LiMn2O4 more effectively than coating on the composite electrode. Furthermore, for ALD coating either on the composite electrode or on LiMn2O4 particles, the effect of oxide ALD modification for improving capacity retention and increasing specific capacity of LiMn2O4 is more phenomenal at elevated temperature than at room temperature.  相似文献   

18.
Low voltage, low energy submerged pulsed arcs with a pulse repetition rate of 100 Hz, energies of 2.6–192 mJ and durations of 10–40 μs, followed by aging in the dark, were used to decompose 10 mg/l methylene blue (MB) dissolved in 40 ml of water, with the addition of 0.5 % H2O2. Electrode pairs composed of Fe/Fe, Ti/Ti, Cu/Cu, Cu/Fe, Fe/Cu, Ti/Fe, Fe/Ti, Cu/Ti and Ti/Cu were used. MB degraded during arc treatment, and during post arc treatment aging. The aging degraded MB faster (by a factor of ~2–3) when the MB solution was subjected to arcing with dissimilar electrodes when one of them was Cu, than for arcing with other used electrode pairs. The impact of the arc treatment time and the electrode materials on the MB removal ratio (C0–Cta)/C0 was determined as a function of aging time ta, where C0 and Cta are the MB concentrations initially and after ta. For a pulse duration of 10 μs and pulse energies of 2–20 mJ, the MB removal rate increased linearly with treatment time and its growth rate increased with pulse energy. The linear dependence of the MB removal rate on treatment time was violated with pulse duration of 40 μs and pulse energies of 30–200 mJ. Kinetics of the MB degradation during aging of the arc treated solution was well described by the 1st order linear rate equation.  相似文献   

19.
A solid‐state pH sensor was fabricated using a transparent conductive titanium oxide film on a glass substrate. The coating of the glass substrate was achieved by a novel simple chemical vapor deposition (CVD) procedure. The sensor slope was found to increase as the temperature of the solution was increased. The performance of the sensor was investigated in the pH range from 2.2 to 11.19. The E‐pH curve is linear with slope of 0.054 V at 298.15 K. This value is closed to the theoretical value 2.303RT/F (0.059 V at 298.15). The standard potential of this electrode, E°, is computed as 177.58 mV with respect to the SCE as reference electrode. Results obtained by the suggested sensor compares very well with conventional pH electrodes where the square of the correlation coefficient was 0.998. This electrode can be used as an indicator electrode in potentiometric acid‐base titration. This electrode behaves reversibly and responds to the oxide ion concentration in molten NaNO3. K2Cr2O7 was potentiometrically titrated with Na2O2 and K2CO3 as titrants in molten NaNO3 at 350°C, using the above mentioned indicator electrodes. An acidity/basicity scale of the oxyanions was established in molten NaNO3 at 350°C.  相似文献   

20.
To improve the electrochemical performances of Si thin film anodes for lithium rechargeable batteries, fullerene thin films are prepared by plasma-assisted evaporation methods to be used as coating materials. Analyses via Raman and X-ray photoelectron spectroscopy indicate that amorphous polymeric films originated from fullerene are formed on the surface of the silicon thin film. The electrochemical performance of these fullerene-coated silicon thin film as an anode material for rechargeable lithium batteries has been investigated by cyclic voltammetry, charge/discharge tests, and electrochemical impedance spectroscopy. The fullerene-coated Si thin films demonstrated a high specific capacity of above 3,000 mAh g−1 as well as good capacity retention for 40 cycles. In comparison with bare silicon anodes, the fullerene-coated silicon thin film showed superior and stable cycle performance which can be attributed to the fullerene coating layer which enhances the Li-ion kinetic property at the electrode/electrolyte interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号