首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
1,3-Alternate calix[4]arene with para-phenylene spacers connecting nitroxide monoradicals and high-spin (S = 1) diradicals provides tetraradical and octaradical scaffolds that possess conformations with slow electron spin relaxation rates (1/T(1)). Such scaffolds may facilitate tuning of relaxation rates that are more favorable for MRI or DNP applications.  相似文献   

2.
Calix[4]arenes constrained to the 1,3-alternate conformation and functionalized at the upper rim with four and two tert-butylnitroxides have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and (1)H NMR) spectroscopy, and magnetic studies. The 1,3-alternate nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation in solution, reveal conformational dependence of exchange coupling. Through-bond coupling between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH(2)-m-phenylene-nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide radicals at the conformationally constrained N...N distance of 5-6 A. Magnetic studies of the calix[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene diradical. The exchange coupling constants (|J/k|) are of the order of 1 K.  相似文献   

3.
Nitroxide diradicals, in which nitroxides are annelated to m-phenylene forming tricyclic benzobisoxazine-like structures, have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and 1H NMR) spectroscopy, as well as magnetic studies in solution and in solid state. For the octamethyl derivative of benzobisoxazine nitroxide diradical, the conformationally constrained nitroxide moieties are coplanar with the m-phenylene, leading to large values of 2J (2J/k > 200 K in solution and 2J/k > 300 K in the solid state). For the diradical, in which all ortho and para positions of the m-phenylene are sterically shielded, distortion of the nitroxide moieties from coplanarity is moderate, such that the singlet-triplet gaps remain large in both solution (2J/k > 200 K) and the solid state (2J/k approximately 400-800 K), though an onset of thermal depopulation of the triplet ground state is detectable near room temperature. These diradicals have robust triplet ground states with strong ferromagnetic coupling and good stability at ambient conditions. Magnetic behavior of the nitroxide diradicals at low temperature is best fit to the model of one-dimensional S = 1 Heisenberg chains with intrachain antiferromagnetic coupling. The antiferromagnetic coupling between the S = 1 diradicals may be associated with the methyl nitroxide C-H- - -O contacts, including nonclassical hydrogen bonds. These unprecedented organic S = 1 antiferromagnetic chains are highly isotropic, compared to those of the extensively studied Ni(II)-based chains.  相似文献   

4.
The formula/structure informatics of monoradical and diradical benzenoid hydrocarbons that are potential reactive intermediates is studied. Some new enumeration and structural results with analytical expressions are presented. The topological paradigm and one-to-one correspondence between the monoradical and diradical constant-isomer series is demonstrated. Constant-isomer benzenoid monoradicals of the formula CnHs have a one-to-one correspondence in isomer number and topology to constant-isomer diradicals of the formula Cn+sHs+3. Some electronic properties of benzenoid radicals are delineated. Excising out a monoradical or diradical benzenoid carbon molecule from a perfect hexagonal graphite layer leaves a matching monoradical or diradical vacancy hole defect called an antimolecule; this observation can be generalized to include excising out all nondisjoint and obvious benzenoid polyradicals from a perfect (Kekuléan) hexagonal graphite layer. It is shown that the characteristics of graphite vacancies (antimolecules) can be deduced from knowledge about the carbon molecules removed in their formation.  相似文献   

5.
Continuous-wave linewidths and spin susceptibilities, spin-spin relaxation rates (1/T2), and spin-lattice relaxation rates (1/T1) for two sources of x-LiPc were measured at 9.5 GHz between 15 and 298 K. Relaxation rates at 34 GHz were measured between 80 and 298 K. Room-temperature relaxation rates also were measured at 250 MHz, 1.9 GHz, and 2.76 GHz. The temperature dependences of linewidths and spin susceptibilities are characteristic of 1-D organic conductors. The ratio of populations of localized and delocalized electrons varies with sample preparation. For a single needle between 15 and about 200 K, 1/T2 is higher for the parallel orientation, but 1/T1 is higher for the perpendicular orientation, consistent with predictions based on dipolar interactions. Between about 60 and 150 K, which is the temperature regime in which spin susceptibility is changing rapidly with temperature, 1/T1 exhibits a non-monotonic dependence on temperature and is lower at 34 GHz than at 9.5 GHz. In other organic conductors, this dependence has been attributed to a bottleneck mechanism of relaxation. At higher temperatures, 1/T1 becomes less orientation-dependent. At room temperature, T1 increases rapidly between 250 MHz (3.0 micros) and 2.76 GHz (6.3 micros) and then shows less frequency dependence up to 34 GHz (9.8 micros). The relaxation rate near room temperature might have a substantial contribution from spin hopping perpendicular to the stacking axis of the molecules.  相似文献   

6.
Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic (1)H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic (1)H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as (1)H, (13)C, and (15)N NMR chemical shifts and electronic absorption spectra.  相似文献   

7.
The parent and p-nitrophenyl-substituted diradicals D-3a,b (triplets), tetraradicals T-3a,b (quintets), and hexaradicals H-3a,b (septets) were photochemically generated in matrix-isolated form (toluene, 77 K) by successive denitrogenation of the trisazoalkanes 3a,b and EPR spectrally characterized. In these high-spin polyradicals the spin-spin interaction within the localized spin-carrying 1,3-cyclopentanediyl diradical unit is much stronger than within the cross-conjugated ferromagnetic coupling unit. Accordingly, a change of the electronic properties in the cyclopentanediyl unit affects decisively the D value of the whole polyradical. Therefore, the spin-accepting p-nitro group reduces the D value of the tetra- and hexaradical in the same amount as that of the diradical. Thus, irrespective of the spin multiplicity, the substituent stabilizes electronically the triplet (D-3a,b), quintet (T-3a,b), and septet (H-3a,b) species with equal efficacy.  相似文献   

8.
The zero-field splitting parameters D of the symmetrically disubstituted and unsymmetrically monosubstituted 1,3-diaryl-1,3-cyclopentanediyl triplet diradicals 1, 2 (X = p-MeO, p-Me, p-Cl, p-NH(2), p-CO(2)Me, p-CN, p-NO(2)), and 5 were determined in 2-methyltetrahydrofuran glass at 77 K. The linear plot (m = 0.558, r(2) = 0.993) of the experimental D values for the symmetrically disubstituted derivatives versus the corresponding monosubstituted ones reveals that the electronic substituent effects are additive and implies (except for the magnetic dipolar interaction) that each benzyl-type radical site acts independently in the localized diradicals. This additivity permits us to view these triplet diradicals as a composite of the two separate monoradical components and allows us to assess valuable electronic properties of benzyl-type monoradicals from the D parameter of the triplet diradical species. A theoretical analysis shows that the D parameter is a measure of the spin density rho at the benzylic positions and the inter-radical distance d in localized diradicals. A good correlation exists between the D parameter of these triplet diradicals (constant inter-radical distance d) and the EPR hyperfine coupling constants of the corresponding benzyl-type monoradicals, which establishes that the observed electronic substituent effects reflect changes in the spin densities at the radical sites. The novel DeltaD scale allows us to quantify spectroscopically the para substituent effect on the spin delocalization at the benzylic position.  相似文献   

9.
The photolysis of the mono-, bis-, and trisazoalkanes 1, 2, and 3 in a toluene matrix at 77 K has been studied by EPR and UV spectroscopy. The purpose was to find the optimal conditions for the generation of the corresponding organic high-spin polyradicals (the triplet diradicals D-1, D-2, and D-3, the tetraradicals T-2 and T-3, and the hexaradical H-3) all with localized cyclopentane-1,3-diyl spin-carrying units, connected by m-phenylene (except D-1) as ferromagnetic coupler. Irradiation of these azoalkanes at 333, 351, or 364 nm gave different polyradical compositions. This observed wavelength dependence is due to the secondary photoreaction (photobleaching) of the polyradical intermediate. The photobleaching process has been examined in detail for the triplet diradical D-1, for which pi,pi excitation affords the cyclopentenes 5 instead of the housane 4 (the usual product of the diradical D-1 on warm-up of the matrix). The pi,pi-excited diradical D-1 fragments into a pair of allyl and methyl radicals (the latter was observed by EPR spectroscopy of a photobleached sample), and recombination affords the cyclopentene. Similar photochemical events are proposed for the photobleaching of the tetraradical T-2 and hexaradical H-3, derived from the respective azoalkanes 2 and 3. Thus, photobleaching of the polyradicals competes effectively with their photogeneration from the azoalkane. This unavoidable event is the consequence of spectral overlap between the cumyl-radical pi,pi chromophore of the polyradical and the n,pi chromophore of the azoalkane at the wavelength (364 nm), at which the latter is photoactive for the required extrusion of molecular nitrogen.  相似文献   

10.
Diarylethenes having two nitronyl nitroxide radicals at both ends of the molecule with oligothiophene spacers were synthesized. The diradicals underwent photochromic reactions upon alternate irradiation with UV and visible light. ESR spectra of the diradicals reversibly changed with the photochromism. The magnetic interaction between spins through oligothiophene spacers was stronger than that through oligophenylene spacers, and the photochromic reactivity of the diradical diarylethenes with oligothiophene spacers was much reduced. The difference of the exchange interaction between open- and closed-ring form isomers was estimated to be more than 150-fold.  相似文献   

11.
We report a DFT study of a Bergman cyclization producing a stable triplet nitroxide diradical and monoradical (after H abstraction from an external source). The monoradical is predicted to be amenable to detection by EPR methods to potentially probe the structure and dynamics of enediyne molecules for drug interactions.  相似文献   

12.
Intramolecular electron-transfer phenomena in the radical anions derived from the partial reduction of diradicals (E,E)-p-divinylbenzene-beta,beta'-ylene bis(4-tetradecachlorotriphenylmethyl) diradical (1) and (E,E)-m-divinylbenzene-beta,beta'-ylene bis(4-tetradecachlorotriphenylmethyl) diradical (2) have been studied by optical and ESR spectroscopy. The synthetic methodology used allows for complete control of the geometry of diradicals 1 and 2, which have para and meta topologies, respectively, as well as of their E/Z isomerism. This fact is used to show the influence of the different topologies on the ease of electron transfer, which is larger for the para than for the meta isomer, in which a small or negligible electronic coupling is observed. A related monoradical compound (E)-bis(pentachlorophenyl)[4-(4-bromophenyl-beta-styryl)-2,3,5,6-tetrachlorophenyl]-methyl radical (3), which has only one such redox site, has also been obtained and studied for comparison purposes.  相似文献   

13.
The intramolecular magnetic coupling constant (J) values of diradical systems linked with two monoradicals through a coupler (para-substituted phenyl acetylene (Model I), meta-substituted phenyl acetylene (Model II), ethylene (Model III)) were investigated by unrestricted density functional theory calculations. We divided eight monoradicals into α-group and β-group according to Mulliken spin density values of the connected atoms. The overall trends in the strength of magnetic interactions of diradicals were found to be identical in three different model systems. The diradicals with para-substituted phenyl acetylene coupler resulted in almost twice stronger intramolecular magnetic coupling interactions of the corresponding diradicals as compared to the meta-substituted one with opposite magnetism. NN-Ethylene-PO (nitronyl nitroxide radical coupled to phenoxyl radical via ethylene coupler) was calculated to have the strongest magnetic coupling constant with ferromagnetism, and to be even stronger (more than twice) than NN-ethylene-NN (nitronyl nitroxide diradical with ethylene coupler), which was reported to have strong antiferromagnetic interactions in a previous experiment. It was found that the spin density values of the connected atoms are closely related to the determination of magnetic interactions and J values. The spin states of the ground state in diradical systems were explained by means of the spin alternation rule.  相似文献   

14.
Intermediate diradicals which occur in the Paterno-Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin-orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the -cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno-Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C-C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C-O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C-C· diradical. For the diradicals produced by the -cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed.  相似文献   

15.
The thermal spin transition that occurs in the polymeric chain compound [Fe(NH(2)trz)3](NO3)2 above room temperature has been investigated by zero-field muon spin relaxation (microSR) over the temperature range approximately 8-402 K. The depolarization curves are best described by a Lorentzian and a Gaussian line that represent fast and slow components, respectively. The spin transition is associated with a hysteresis loop of width DeltaT = 34 K (T1/2 upward arrow = 346 K and T1/2 downward arrow = 312 K) that has been delineated by the temperature variation of the initial asymmetry parameter, in good agreement with previously published magnetic measurements. Zero-field and applied field (20-2000 Oe) microSR measurements show the presence of diamagnetic muon species and paramagnetic muonium radical species (A = 753 +/- 77 MHz) over the entire temperature range. Fast dynamics have been revealed in the high-spin state of [Fe(NH(2)trz)3](NO3)2 with the presence of a Gaussian relaxation mode that is mostly due to the dipolar interaction with static nuclear moments. This situation, where the muonium radicals are totally decoupled and not able to sense paramagnetic fluctuations, implies that the high-spin dynamics fall outside the muon time scale. Insights to the origin of the cooperative effects associated with the spin transition of [Fe(NH(2)trz)3](NO3)2 through muon implantation are presented.  相似文献   

16.
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism.

We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.  相似文献   

17.
Intermediate diradicals which occur in the Paterno–Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin–orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the α-cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno–Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C–C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C–O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C–C· diradical. For the diradicals produced by the α-cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed.  相似文献   

18.
We predict the intramolecular magnetic exchange coupling constant (J) for eleven nitronyl nitroxide diradicals (NN) with different linear and angular polyacene couplers from broken-symmetry density functional treatment. For the linear acene couplers, J initially decreases with increase in the number of fused rings. But from anthracene coupler onward, the J value increases with the number of benzenoid rings due to an increasing diradical character of the coupler moiety. The J value for the diradical with a fused bent coupler is always found to be smaller than that for a diradical with a linear coupler of the same size. The nuclear independent chemical shift (NICS) is calculated, and it is observed that the average of the NICS values per benzenoid ring in the diradical is less than that in the normal polyacene molecule. An empirical formula for the magnetic exchange coupling constant of a NN diradical with an aromatic spacer is obtained by combining the Wiberg bond order (BO), the angle of twist (phi) of the monoradical (NN) plane from the plane of the coupler, and the NICS values. A comparison of the formula with the computed values reveals that, from tetracene onward, the diradical nature of the linear acene couplers becomes prominent thereby leading to an increase in the ferromagnetic coupling constant. Isotropic hyperfine coupling constants are calculated by using a polarized continuum model for the diradicals in different solvents and in vacuum.  相似文献   

19.
Molecules with luminescence have been extensively investigated, but the luminescence of a stable molecule with a triplet ground state has not been observed. Synthesis of boron-containing radicals has attracted lots of interest because of their unique electronic structures and potential applications in organic semiconductors. Though some boron-based diradicals have been reported, neutral boron-containing diradicals with triplet ground states are rare. Herein two borocyclic diradicals with different substituents (3 and 4) have been isolated. Their electronic structures were investigated by EPR and UV spectroscopy, and SQUID magnetometry, in conjunction with DFT calculations. Both experiment and calculation suggest that 3 is an open shell singlet diradical while 4 is a triplet ground state diradical with a large singlet–triplet gap (0.25 kcal mol−1). Both diradicals show multi fluorescence peaks (3: 414, 431, and 470 nm; 4: 420, 433, and 495 nm). 3 displays multiple redox steps and is a potential material towards the design of high-density memory devices. 4 represents the first example of a neutral triplet boron-containing diradical with a strong ferromagnetic interaction, and also is the first stable triplet diradical emitter.

Stable borocyclic diradical emitters with a tunable ground state.  相似文献   

20.
To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T(1) and T(m) for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20-30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号