首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
《Applied Mathematical Modelling》2013,37(24):10007-10026
In present paper a three-dimensional Vortex-In-Cell method with two-way coupling effect was developed to study the bubble plume entrainment by a vortex ring. In this method the continuous flow was calculated by the three-dimensional Vortex-In-Cell method and the bubbles are tracked through bubble motion equation. Two-way coupling effect between continuous flow and dispersed bubbles is considered by introducing a vorticity source term, which is induced by the change of void fraction gradient in each computational cell. After validated by the comparison between experimental measurements and simulation results for the motion of vortex rings and the rising velocity of bubble plume, present method is implemented to simulate the interaction between an evolving vortex ring and a rising bubble plume. It was found that there is little effect of the bubble entrainment to the total circulation of vortex ring while the effect of bubble entrainment to the vortex ring structure is quite obvious. The bubble entrainment by the vortex ring not only changed the vorticity distribution in the vortex structure, but also displaced the positions of the vortex cores. The vorticity in the lower vortex core of the vortex ring decreases more than that in the upper vortex core of the vortex ring while the vortex core in the upper part of the vortex ring is displaced to the center of vortex ring by the entrained bubbles. Smaller bubbles are easier to be entrained by the large scale vortex structure and the transportation distance is in inverse proportion to bubble diameter.  相似文献   

3.
The unsteady, three-dimensional full Navier-Stokes equations are solved using a Beam-Warming implicit algorithm in this paper. Computations of the flow over a 76° sweep delta wing at 36.5° angle of attack is presented. The sectional streamlines are depicted and the evolution of the instantaneous crossflow topology of the leading-edge vortex is analyzed. It is found that, along the axis, the topology of the primary vortex alters several times starting from stable focus near the apex to unstable focus, and lasts back to stable focus near wake edge; The stable limit cycle and unstable limit cycle are shown in this evolution. These various altering topologies stem from the stretching and compression of the vortex core.  相似文献   

4.
Summary This paper discusses the problem of critical-flow cross-sections in vortex flows. It is shown that there are two different types of vortex flows, A-type and B-type vortices (say). An A-type vortex approaches its critical flow state as its cross-sectional area increases and departs from the critical state as the cross-sectional area is decreased. This property is associated with the particular dependence of total pressure and circulation on the stream function, and it holds for both subcritical and supercritical A-type vortices. On the other hand, both subcritical and supercritical B-type vortices approach their critical flow states as their cross-sectional areas are decreased and depart from their critical states for increasing cross-sectional area. As was shown by Benjamin, setting the first variation of the flow force with respect to the stream function equal to zero leads to Euler's equation of motion. The second variation also vanishes if the corresponding flow state is critical. In this case the sign of the third variation decides whether the flow is an A-type or a B-type vortex. Within the framework of inviscid-fluid flow theory the type of a vortex is preserved unless vortex breakdown occurs. Making use of the knowledge that vortex flows are controlled by two different types of critical-flow cross-sections a variety of vortex flow phenomena are investigated, including the two types of inlet vortices that are observed upstream of jet engines, the behavior of vortex valves, the flow characteristics of liquid-fuel atomizers and the bath tub vortex.  相似文献   

5.
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach numberMc = 0.8 andRe = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of A -vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.  相似文献   

6.
This paper is concerned with the dynamics of vortex sources in a deformation flow. The case of two vortex sources is shown to be integrable by quadratures. In addition, the relative equilibria (of the reduced system) are examined in detail and it is shown that in this case the trajectory of vortex sources is an ellipse.  相似文献   

7.
N.A. Lebedeva  A.N. Osiptsov 《PAMM》2008,8(1):10627-10628
The aim of the study is to model the formation of local particle accumulation zones near several typical kinematic singularities. The flows considered are: (i) a steady two–dimensional flow with localized vorticity of the Kelvin cat's eye type (vortex in a mixing layer), (ii) a steady axisymmetric flow formed by a vortex filament normal to a plane in viscous fluid (simple model of tornado), (iii) a neighbourhood of a zero acceleration point in two–dimensional unsteady (harmonic) flow. From parametric numerical calculations, we investigated the inertial mechanisms of forming local particle accumulation zones and found the threshold values of governing parameters separating qualitatively different particle velocity and density patterns. In particular, it is shown that the zero–acceleration point can either “attract” or “scatter” the particles. Zones of concentrated vorticity are typically devoid of particles. In the tornado–like flow, an axisymmetric “cup-shaped” particle accumulation region is formed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
考虑几何非线性的影响,利用无限薄的旋涡薄层模拟气流在结构表面形成的扰动,由非稳态Bernoulli方程和环量定理将空气压力表示成旋涡密度的函数;然后由涡格法结合耦合边界条件求出旋涡密度,根据系统的稳定性判据得到结构发散失稳临界风速的解析表达式.通过三维开敞式膜结构的计算分析,发现空间膜结构的曲率是影响结构气动失稳临界风速的主要因素.  相似文献   

9.
Numerical simulation is used to study the Kolmogorov flow in a shear layer of a compressible inviscid medium. A periodic permanent force applied to the flow gives rise to a vortex cascade of instabilities. The influence exerted by the size of the computational domain, the initial conditions, and the amplitude of the force on the formation of an instability cascade and the transition to turbulence is studied. It is shown that the mechanism of the onset of turbulence has an essentially three-dimensional nature. For the turbulent flows computed, the classical Kolmogorov ?5/3 power law holds in the inertial range.  相似文献   

10.
The time evolution of a small disturbance on a piecewise linear mean flow, approximating a parabolic profile, is calculated using Fourier transform methods. The solution is found to consist of two parts: one dispersive, incorporating the spreading of waves; one convective, characterized by a convection of the disturbance with the local mean velocity. Two dispersive modes are found: one symmetric with respect to the channel center line and one antisymmetric. The dispersivity of the symmetric mode is in fair agreement with the symmetric mode obtained for inviscid parabolic flow, whereas the antisymmetric mode is misrepresented. One of the parts of the solution to the horizontal velocities is found to be purely three-dimensional. This results from fluid elements retaining part of their horizontal momentum as they are lifted up by the time integrated effect of the vertical velocity. Calculations of the development of a particular disturbance modeling two vortex pairs are also made. The results show that the dispersive part, although decaying, is largest for the vertical velocity. For the horizontal velocity the three-dimensional lift-up effect provides the largest amplitudes. This part does not show any sign of decay, in agreement with earlier analysis by Gustavsson [8] and Landahl [16]. This last effect partly explains the sensitivity to three-dimensional disturbances seen in transition experiments and calculations. Comparison of the solution to a full numerical simulation using the Navier-Stokes equations shows good agreement for short times.  相似文献   

11.
For three-dimensional vortex motion, a linear mathematical model with random coefficients is considered, and formulas for the first two moment functions of solutions are derived. The conditions are found under which a linear chaotic resonance occurs; i.e., the mean angular velocity of the motion increases. The results show that the energy of the vortex increases because of the chaotic motions present in the flow.  相似文献   

12.
Summary This paper treats new effects, such as transcritical bifurcation and extinction, exhibited by the solution branches of buckled states of nonlinearly elastic columns. The general models used are intimately related to the three-dimensional theory of nonlinear elasticity. These new effects are caused by the interaction of the nonlinearity of material response, the lack of symmetry in the cross-section, the nature of boundary conditions, and the nonuniformity of the rod. Although a variety of sophisticated analytic tools are used to treat local and global branching of solutions, the main emphasis is placed on the mechanics that underlies the form of the governing equations.Dedicated to Prof. Klaus Kirchgässner on the occasion of his sixtieth birthday  相似文献   

13.
In this article, we present three dimensional CFD study of turbulent vortex flow in an annular passage using OpenFOAM 1.6. The vortex flow is generated by introducing the flow through a tangential entry to the passage. For the analysis presented in this article, turbulence was modeled using the Rε/k − ε model, in addition, a comparison between such model with the standard k − ε model was conducted and discussed. The main characteristics of the flow such as vortex structure and recirculation zone were investigated. It was found that flow is subjected to Rankine vortex structure with three forced vortex regimes and a free vortex region near to the outer wall. The phenomenon of vortex decay was investigated by depicting the swirl number trend along the axial direction of the flow domain. It was found that the vortex decay is subjected to an exponential decay behavior. New coefficients for the exponential decay correlation were derived based on local values of velocity components in different radial planes.  相似文献   

14.
Ginzburg-Landau Vortex and Mean Curvature Flow with External Force Field   总被引:4,自引:0,他引:4  
This paper is devoted to the study of the vortex dynamics of the Cauchy problem for a parabolic Ginzburg Landau system which simulates inhomogeneous type II superconducting materials and three-dimensional superconducting thin films having variable thickness. We will prove that the vortex of the problem is moved by a codimension k mean curvature flow with external force field. Besides, we will show that the mean curvature flow depends strongly on the external force, having completely different phenomena from the usual mean curvature flow.  相似文献   

15.
This work presents nonsimilar boundary layer solutions for double-diffusion natural convection near a sphere with constant wall heat and mass fluxes in a micropolar fluid. A coordinate transformation is employed to transform the governing equations into nondimensional nonsimilar boundary layer equations and the obtained boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt number and the local Sherwood number are presented as functions of the vortex viscosity parameter, Schmidt number, buoyancy ratio, and Prandtl number. Higher vortex viscosity tends to retard the flow, and thus decreases the local convection heat and mass transfer coefficients, raising the wall temperature and concentration. Moreover, the local convection heat and mass transfer coefficients near a sphere in Newtonian fluids are higher than those in micropolar fluids.  相似文献   

16.
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise charac-  相似文献   

17.
In fluid dynamics, Clebsch made use of the representation for the velocity field in terms of three potentials Φ, α, β in order to construct a first integral of the equations of motion in case of an inviscid flow with vortices. Apart from this, he received a self-adjoint form of the equations allowing for deriving them from a variational formulation. In latter times the Clebsch transformation has been applied to different physical problems, for instance to baroclinic flow, Maxwell equations in classical electrodynamics [1], in Magnetohydrodynamics and even quantum theory within the context of a quantization of vortex tubes. Viscous flow, however, has not yet been formulated in terms of Clebsch variables to our best knowledge. It is the aim of this paper to demonstrate how Clebsch variables can be applied to viscous flow on the one hand, leading to a first integral of Navier-Stokes equations as a first example. As a second example, solid mechanics is considered: by making use of an analogy between vortices in fluid flow on the one hand and dislocations in crystals on the other hand, a dynamic theory of dislocations can be established by using a certain modification of the Clebsch transformation. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper, the convergence of the vortex filament methodfor three-dimensional incompressible and inviscid fluid flowis proved. Properties of consistency and stability are analysed.The foundation for studying these properties is based on thecubature formulae with lines as well as on the specific useof the vector measure that transports the vorticity by the flow,preserving the filament structure of the solution of the problem.In this way, the method takes into account the stretching termimplicitly.  相似文献   

19.
We study the interplay between the local geometric properties and the non-blowup of the 3D incompressible Euler equations. We consider the interaction of two perturbed antiparallel vortex tubes using Kerr's initial condition . We use a pseudo-spectral method with resolution up to 1536 × 1024 × 3072 to resolve the nearly singular behavior of the Euler equations. Our numerical results demonstrate that the maximum vorticity does not grow faster than doubly exponential in time, up to t = 19, beyond the singularity time t = 18.7 predicted by Kerr's computations , . The velocity, the enstrophy, and the enstrophy production rate remain bounded throughout the computations. As the flow evolves, the vortex tubes are flattened severely and turned into thin vortex sheets, which roll up subsequently. The vortex lines near the region of the maximum vorticity are relatively straight. This local geometric regularity of vortex lines seems to be responsible for the dynamic depletion of vortex stretching.  相似文献   

20.
The changes in the flow properties under the action of electromagnetic body forces are investigated numerically for ferrofluid flow past a circular cylinder. Ferrofluid is modeled as both a Newtonian and a non-Newtonian Power-Law fluid. Magnetic forces are applied by placing magnets at different locations on the surface of the cylinder. The magnetostatic effects on the structure of the wake region, on drag reduction and on vortex formation length and frequency are shown and compared in terms of Reynolds number, interaction parameter, Power-Law index and magnet location. It is shown that the increase in the interaction parameter reduces drag for both Newtonian and non-Newtonian model. This decrease is observed to be higher for shear thinning and lower for shear thickening fluid compared to Newtonian case. It is also shown that vortex street formation in the wake region behind the cylinder may be delayed under high magnetic effects. The Strouhal number is higher for shear thinning case at both low and high Reynolds numbers, and lower for shear thickening case at high Reynolds numbers, compared to Newtonian fluid. The vortex formation frequency also decreases under the action of the magnetic field in all cases, however the vortex formation length increases. Placing the magnet towards the front region of the cylinder increases considerably the drag coefficient for both Newtonian and non-Newtonian model. This increase in drag coefficient is higher in the shear thinning fluid and lower in the shear thickening fluid compared to the Newtonian case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号