首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tunable growth of In-doped Ga2O3 (Ga2O3:In) and Ga-doped In2O3 (In2O3:Ga) nanowires (NWs) on Au-coated Si substrates was achieved by modulating the amount of water vapor in flowing Ar at 700–750 °C via carbothermal reduction of Ga2O3/In2O3 powders with a fixed weight ratio. In Ar, only the Ga2O3:In NWs were grown, while in wet Ar the In2O3:Ga NWs were synthesized instead. The Ga concentration in In2O3 NWs decreased with the increment of water vapor in flowing Ar. The growth of both Ga2O3:In and In2O3:Ga NWs followed the vapor–liquid–solid process. The In and Ga doping induced a redshift and a blueshift in the optical bandgaps of Ga2O3 NWs and In2O3 NWs, respectively. The growth mechanisms and optical properties of Ga2O3:In and In2O3:Ga NWs were discussed.  相似文献   

2.
Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)–pyrrole coordinate structures with strong Cu(I)–N bond signal shown in XPS characterization.  相似文献   

3.
The effects of oxygen content in the sputtering gas on the crystallographic and optoelectronic properties of 210 nm-thick Zr–doped In2O3 (Zr–In2O3) films by rf magnetron sputtering were initially studied. The results of X-ray diffraction show that the Zr–In2O3 films grown on glass substrates exhibit mixed crystallographic orientations. Moreover, the Zr–In2O3 film grown in an Ar atmosphere promotes the appearance of crystallographic orientation of (222). The surface of the Zr–In2O3 film becomes rougher as the oxygen content in the sputtering gas decreases; the current images obtained by conductive atomic force microscopy reveal that the surfaces of the Zr–In2O3 films exhibit a distribution of coexisting conducting and nonconducting regions, and that the area of the nonconducting surface increases with the oxygen content in the sputtering gas. The resistivity is minimized to 3.51×10−4 Ω cm when the Zr–In2O3 film is grown in an Ar atmosphere and the average transmittance in the visible light region is ∼85%. The optical band gap decreases as the oxygen content in the sputtering gas increases.  相似文献   

4.
Undoped and N-doped  β-Ga2O3 nanowires (NWs), using NH3 as the dopant source, were successfully fabricated by the CVD method on Si substrates. The microstructure, morphology, element composition and carrier concentration of the samples were characterized by XRD, SEM, TEM, and EDX. The results revealed that well-aligned undoped NWs were perpendicular to the substrates. Comparing with undoped β-Ga2O3 NWs, the morphology of N-doped β-Ga2O3 NWs showed a significant change and they were randomly oriented relative to the substrates. As the NH3 flow was increased, the microstructure of the sample presented a lot of branched-like and trumpet-shaped structures. Simultaneously, a rougher surface has been attained. PL spectrum measurements showed that N-doped β-Ga2O3 NWs had ultraviolet (UV), blue and green emission peaks because of the N-doped process. Furthermore, micro-scale undoped β-Ga2O3/N-doped β-Ga2O3 homojunction structures were fabricated. The IV property of the fabricated N-doped β-Ga2O3 microwire and β-Ga2O3/N-doped β-Ga2O3 microwire homojunction were compared. IV results testified that N-doped β-Ga2O3 NWs showed p-type conductivity.  相似文献   

5.
用自制的设备制备了取向和无取向氧化铟纳米线,并研究了In2O3纳米线的场发射性质,发现取向纳米线比非取向纳米线有着更好的场发射特性.取向纳米线的开启和阈值场强明显低于非取向纳米线,这可能是由于取向纳米线之间的场屏蔽效应较弱以及取向纳米线有较多的顶部发射端的缘故. 关键词: 场发射 纳米线 取向 非取向  相似文献   

6.
In2O3 nanowires have been successfully fabricated on a large scale from indium particles by thermal evaporation at 1030 °C. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show that these nanowires are uniform with diameters of about 60–120 nm and lengths of about 15–25 μm. XRD and selected-area electron diffraction analysis together indicate that these In2O3 nanowires crystallize in a cubic structure of the bixbyite Mn2O3 (I) type (also called the C-type rare-earth oxide structure). The growth mechanism of these nanowires is also discussed. Received: 29 June 2001 / Accepted: 28 September 2001 / Published online: 20 December 2001  相似文献   

7.
We report the synthesis of single-crystalline α-Fe2O3 nanoflakes from a simple Fe–air reaction within the temperatures range of 260–400 °C. The nanoflakes synthesized at the lowest temperature (260 °C) in this work show an ultra-sharp morphology: 5–10 nm in thickness, 1–2 μm in length, 20 nm in base-width and around 5 nm at the tips; successfully demonstrate the promising electron field emission properties of a large-scaled α-Fe2O3 nanostructure film and exhibit the potential applications as future field-emission (FE) electron sources and displays (FEDs). The formation and growth of α-Fe2O3 nanostructures were discussed based on the surface diffusion mechanism. PACS 79.60.Jv; 79.70.+q; 77.84.Bw  相似文献   

8.
We have investigated the synthesis of nanostructures, as well as the control of their size and location by means of ion beams. The phase separation and interface kinetics under ion irradiation give new possibilities for controlling the growth of nanostructures. Additionally, the chemical decomposition of the host matrix by collisional mixing can contribute to the self-organization of nanostructures, especially at interfaces. It is shown how collisional mixing during ion implantation affects nanocrystal (NC) synthesis and how ion irradiation through NCs modifies their size and size distribution. An analytical expression for solute concentration around an ion-irradiated NC was found, which may be written like the well-known Gibbs–Thomson relation. However, parameters have modified meanings, which has a significant impact on the evolution of NC ensembles. “Inverse Ostwald ripening” of NCs, resulting in an unimodal NC size distribution, is predicted, which has been confirmed experimentally for Au NCs in SiO2 and by kinetic lattice Monte Carlo simulations. At interfaces, the same ion-irradiation-induced mechanism may result in self-organization of NCs into a thin δ-layer. Collisional decomposition of SiO2 may enhance the NC δ-layer formation in SiO2 at the Si/SiO2 interface. The distance of the self-organized NC δ-layer from the SiO2/Si interface renders the structure interesting for non-volatile memory applications. Received: 11 November 2002 / Accepted: 12 November 2002 / Published online: 4 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-351-260-3285, E-mail: K.-H.Heinig@fz-rossendorf.de  相似文献   

9.
Nanostructured zinc oxide (ZnO) nanobelts and aluminum oxide (Al2O3) nanoribbons have been grown successfully from the vapor phase. XRD results confirmed the purity and the high quality of the formed crystalline materials. TEM images showed that ZnO nanostructures grew in the commonly known tetrapod structure with nanobelts separated from the tetrapods with an average width range of 10–30 nm and a length of about 500 nm. Al2O3 nanostructures grew in the form of nanoribbons with an average width range of 20–30 nm and a length of up to 1 μm. The catalytic oxidation of CO gas into CO2 gas over the synthesized nanostructures is also reported. Higher catalytic activity was observed for Pd nanoparticles loaded on the ZnO nanobelts (100% conversion at 270 °C) and Al2O3 nanoribbons (100% conversion at 250 °C). The catalytic activity increased in the order Cu < Co < Au < Pd for the metal-loaded nanostructures. The preparation methods could be applied for the synthesis of novel nanostructures of various materials with novel properties resulting from the different shapes and morphologies.  相似文献   

10.
A memory device with In2O3 nanocrystals embedded in a biphenyl-tertracarboxylic dianhydride-phenylen diamine (BPDA-PDA) polyimide layer on a ZnO layer was fabricated, and its electrical properties were evaluated. Then, the transmittance efficiency in the structure of the BPDA-PDA polyimide/In2O3 nanocrystals/ZnO/ITO/double polishing sapphire substrate was measured to be about 80% between 440 to 800 nm by ultraviolet-visible transmittance spectroscopy. A bipolar switching current bistability by difference resistance appeared in the sweep voltage rage from −7 to 7 V. It was considered that the bipolar behavior of current-voltage may originate from a resistance fluctuation because of the electron charging effect in In2O3 nanocrystals by voltage sweeping, Fowler–Nordheim tunneling, space-charge-limited current, and the migration of O2− ions.  相似文献   

11.
《Current Applied Physics》2018,18(7):785-792
Highly crystalline undoped and Ga-doped indium oxide nanorods with square-shaped faceted morphology were fabricated through the vapor-liquid-solid process at moderate temperature. Effects of Ga incorporation on the growth rate, morphology, and crystallinity of the nanostructures were evaluated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Defect structure and waveguiding behavior of the 1-D In2O3 nanostructures have been studied using microRaman and micro photoluminescence spectroscopies. The appearance of several resonant modes superposed over the broad room temperature micro-photoluminescence spectra of the nanostructures demonstrates their waveguiding behaviors. While the pristine or undoped In2O3 nanostructures of 20–150 nm widths revealed Fabry-Pérot resonance modes, the Ga-incorporated nanostructures of 20–100 nm width revealed whispering gallery modes due to their smaller widths. The quality factor (Q) of the resonators was estimated to be about 20.86 and 188.79 for the pristine and Ga-incorporated nanostructures, respectively, indicating a huge enhancement due to Ga incorporation. The increment in the Q factor on Ga incorporation in In2O3 nanorods opens up the possibility of their utilization for the development of new optical transmitters and resonators, and fabrication of nanoscopic lasing devices.  相似文献   

12.
The morphology of C60 precipitates synthesized by using isopropyl alcohol (IPA) added with water was investigated in order to know the effect of water on the growth of C60 nanowhiskers (C60NWs) in C60–toluene–IPA solution systems. The stability of C60NWs decreased and granular crystals of C60 were formed in the solutions when IPA added with an excess amount of water was used in the liquid–liquid interfacial precipitation method. The C60NWs were found to be destabilized with time in the solutions added with water. The C60NWs dried in air showed similar Raman profiles irrespective of the use of IPA with and without water addition. The Raman profiles of granular C60 single crystals showed the base lines much flatter than those of C60NWs, indicating that C60NWs possess a disordered crystal structure. By optimizing the growth condition, short C60NWs with aspect ratios ranging from 3 to 10 and an average length of about 1.8 μm were successfully fabricated. The short C60NWs are expected to be applicable for electrodes of organic thick film solar cells.  相似文献   

13.
The experimental specimens consisted of periodic columnar nanostructures of anodic titanium oxide (average dimension≈60 nm) that were produced by anodic oxidation of the two-layer thin-film composition Ti−Al in a solution of oxalic acid that was followed by vacuum annealing. The structures formed were studied by electron microscopy and reflection IR spectroscopy. It is found that the nanodimensional columns consist predominantly of quasiamorphous Ti dioxide in the form of rutile and anatase with minimum inclusions of Ti2O3 and TiO. Vacuum annealing decreases the content of TiO2 and increases that of Ti2O3 and TiO in the oxide columns. These changes characterize dissolution of oxygen from the composition of the columnar structures in a residual film of metallic Ti. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 200–204, March–April, 1998.  相似文献   

14.
Sensing characteristics of ZnO, In2O3 and WO3 nanowires have been investigated for the three nitrogen oxides, NO2, NO and N2O. In2O3 nanowires of ∼20 nm diameter prepared by using porous alumina membranes are found to have a sensitivity (defined as the ratio of the sensor resistance in the gas concerned to that in air) of about 60 for 10 ppm of all the three gases at a relatively low temperature of 150 °C. The response and recovery times are around 20 s. The sensitivity of these In2O3 nanowires is around 40 for 0.1 ppm of NO2 and N2O at 150 °C. WO3 nanowires of 5–15 nm diameter, prepared by the solvothermal process show a sensitivity of 20–25 for 10 ppm of the three nitrogen oxides at 250 °C. The response and recovery times are 10 s and 60 s, respectively. The sensitivity is around 10 for 0.1 ppm of NO2 at 250 °C. The sensitivity of In2O3 and WO3 nanowires is not affected by humidity even up to 90% relative humidity. The study also reveals that the sensing mechanism for the three nitrogen oxides have a commonality in that the desorption of oxygen is a crucial step in all the cases. PACS 07.07.Df; 85.35.-p; 82.35.Np  相似文献   

15.
Ramallo-López  J.M.  Requejo  F.G.  Rentería  M.  Bibiloni  A.G.  Miró  E.E. 《Hyperfine Interactions》1999,120(1-8):529-534
Two indium-containing silicalite zeolites (In/H–ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500oC in air before and after reduction–reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction–reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
We report the synthesis, structure, microstructure, chemical stability in H2O and CO2, and electrical transport properties of an oxide ion-conducting perovskite-related structure Ba3In2MO8 (M = Zr, Ce, Zr0.5Ce0.5). Powder X-ray diffraction confirmed the formation of a simple cubic perovskite-like structure for Ba3In2ZrO8 (a = 4.205(9) ?), Ba3In2CeO8 (a = 4.234(1) ?), and Ba3In2Zr0.5Ce0.5O8 (a = 4.285(8) ?). The increase in lattice constant is consistent with the Shannon’s ionic radius trend. Among the three samples investigated, Ba3In2ZrO8 was found to be stable against reaction with pure CO2 at elevated temperature, while the Ce and 1:1 Zr and Ce compounds were unstable at 600 °C. Ba3In2ZrO8, Ba3In2CeO8, and Ba3In2Zr0.5Ce0.5O8 were found to be chemically unstable in H2O at about 50 °C. The bulk electrical conductivity of the samples prepared at different temperatures was found to be nearly the same; the total conductivity (bulk + grain–boundary + electrode) seems to change with sintering temperature. Both Ba3In2ZrO8 and Ba3In2CeO8, prepared at 1,400 °C, exhibited comparable electrical conductivity of about 6 × 10−3 S cm−1 at 800 °C, which is comparable to that of conventional Y2O3-doped ZrO2 electrolyte. These compounds are very promising electroltes, provided that their chemical and mechnical stabitities are improved without losing any ionic conductivity.  相似文献   

17.
《Current Applied Physics》2015,15(11):1534-1538
This paper reports the facile synthesis of In2O3-capped Zn-doped Fe2O3 nanorods along with their ethanol gas sensing properties. A two-stage process involving thermal oxidation of Fe foils and Zn powders in air and the sputter-deposition of In2O3 was used to synthesize these nanostructures. The nanorods synthesized using this method were ∼5 μm in length and 50–120 nm in diameter with a shell layer thickness of 10–15 nm. The multiple-networked In2O3-capped Zn-doped Fe2O3 nanorod sensor showed a significantly enhanced and ultrafast response to ethanol gas. The enhanced sensing performance was explained by modulation of the potential barrier height and the strong catalytic activity of In2O3 for ethanol oxidation.  相似文献   

18.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

19.
Nanocomposite films, with Ni nanocrystals (NCs) (5–8 nm) embedded within SrTiO3/BaTiO3 superlattice (period: 30 nm), were prepared by laser molecular beam epitaxy. In situ reflection high-energy electron diffraction was employed to study the role of lattice strain in the self-organization of NCs and the epitaxial growth of SrTiO3/BaTiO3 superlattice. It was found that the strain from large lattice mismatch drove the self-organization of Ni NCs. Also the SrTiO3/BaTiO3 epitaxial growth was achieved on the NC-dotted irregular interface, because the epitaxial growth occurred preferably at sites with low strain. The fine alternation of the two processes would provide a possible route to engineer controllably the nanocomposite microstructure.  相似文献   

20.
Effects of thermal treatments on the electrical properties and microstructures of indium–tin oxide (ITO)/GaN contacts have been investigated using a rf-magnetron sputter deposition followed by rapid thermal annealing. ITO films annealed at 800 °C revealed Schottky contact characteristics with a barrier height corresponding to ITO’s work function of 4.62 eV. The evolution of electrical properties of ITO/GaN contacts was attributed to the preferential regrowth of In2O3 (222)//GaN (0001) with an ideal metal–semiconductor Schottky contact. The feasible use of ITO/GaN as a transparent Schottky contact would be realized by the enhanced regrowth of In2O3 at high temperature. Received: 1 September 2000 / Accepted: 15 November 2000 / Published online: 28 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号