首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张良  姬广富  赵峰  龚自正 《中国物理 B》2011,20(4):47102-047102
This paper performs first-principles calculations to study the structural,mechanical and electronic properties of the spinels ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 ,using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 become unstable at about 50 GPa,40 GPa and 25 GPa,respectively. From analysis of the band structure of the three compounds at equilibrium volume,it obtains a direct band gap of 4.35 eV for ZnAl2O4 and 0.89 eV for ZnCr2O4 ,while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

2.
Cu2O thin films with (111) preferred orientation have been grown on glass and Cu substrates by rapid thermal oxidation of Cu at 500℃ for 45s. The optical band gap energy was determined by spectral data of transmittance and absorbance to be 2.04eV. The electrical conductivity of grown films was measured around (1:1 × 10^-5Ω^-1cm^-1) at 300K. Thermoelectric power measurements of the film were carried out. Furthermore, the properties of these films are compared with properties of Cu2O obtained by other methods.  相似文献   

3.
The lattice,the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by firstprinciples calculations.The results show that the lattice constants change linearly with stress.Band gaps are broadened linearly as the uniaxial compressive stress increases.The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction,and the reason for band gap of n-type ZnO changing with stress is also explained.The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy.However,when the energy is higher than 4.0 eV,the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears.There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV.The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO,which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.  相似文献   

4.
The desirable physical properties of hardness, high temperature stability, and conductivity make the early transition metal nitrides important materials for various technological applications. To learn more about the nature of these materials, the local-density approximation(LDA) and GW approximation i.e. combination of the Green function G and the screened Coulomb interaction W, have been performed. This paper investigates the bulk electronic and physical properties of early transition metal mononitrides, ScN and YN in the rocksalt structure. In this paper, the semicore electrons are regarded as valance electrons. ScN appears to be a semimetal, and YN is semiconductor with band gap of 0.142eV within the LDA, but are in fact semiconductors with indirect band gaps of 1.244 and 0.544\,eV respectively, as revealed by calculations performed using GW approximation.  相似文献   

5.
We calculate structural, electronic properties and chemical bonding of borate Li4CaB2O6 under high pressure by means of the local density-functional pseudopotential approach. The equilibrium lattice constants, density of states, Mulliken population, bond lengths, bond angles as well as the pressure dependence of the band gap are presented. Analysis of the simulated high pressure band structure suggests that borate Li4CaB2O6 can be used as the semi-conductor optical material. Based on the Mulliken population analysis, it is found that the electron transfer of the Li atom is very different from that of other atoms in the studied range of high pressures. The charge populations of the Li atom decrease with the pressure up to 60 GPa, then increase with the pressure.  相似文献   

6.
周波  苏庆  贺德衍 《中国物理 B》2009,18(11):4988-4994
Using a first-principles approach based on density functional theory,this paper studies the electronic and dynamical properties of β-V2O5.A smaller band gap and much wider split-off bands have been observed in comparison with αV2O5.The Ramanand infrared-active modes at the Γ point of the Brillouin zone are evaluated with LO/TO splitting,where the symbol denotes the longitudinal and transverse optical model.The nonresonant Raman spectrum of a βV2O5 powder sample is also computed,providing benchmark theoretical results for the assignment of the experimental spectrum.The computed spectrum agrees with the available experimental data very well.This calculation helps to gain a better understanding of the transition from αto β-V2O5.  相似文献   

7.
The first-principles total energy calculations with the local density approximation (LDA) and the plane wave pseudopotential method are employed to investigate the structural properties and electronic structures of Li3AlN2. The calculated lattice constants and internal coordination of atoms agree well with the experimental results. Detailed studies of the electronic structure and the charge-density redistribution reveal the features of the strong ionicity bonding of Al-N and Al-Li, and strong hybridizations between Li and N in Li3AlN2. Our band structure calculation verifies Li3AlN2 is a direct gap semiconductor with the LDA gap value of about 2.97eV and transition at Г.  相似文献   

8.
Full potential linearized augmented plane wave (FPLAPW) method calculations are carried out for semiconducting orthorhombic BaSi2. The optical properties and the origin of the different optical transitions are investigated. Our calculated band gap of 1.0918eV is indirect, which is in good agreement with the experimental result. The bonds between Ba and Si are considered to be electrovalent bond. The anlsotropy in the imaginary part ε2(w) and real part εl(w) of the optical dielectric tensor are analysed. The contributions of various transition peaks are explained from the imagnary part of the dielectric function.  相似文献   

9.
The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory.The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure.In N anion-doped Cu2O,some N 2p states overlap and mix with the O2p valence band,leading to a slight narrowing of band gap compared with the undoped Cu2O.However,it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.  相似文献   

10.
In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.  相似文献   

11.
Advanced GGA + U(Hubbard) and modified Becke–Johnson(mBJ) techniques are used for the calculation of the structural, electronic, and optical parameters of α-Al2-x CoxO3(x = 0.0, 0.167) compounds. The direct band gaps calculated by GGA and m BJ for pure alumina are 6.3 eV and 8.5 eV, respectively. The m BJ approximation provides results very close to the experimental one(8.7 eV). The substitution of Al with Co reduces the band gap of alumina. The wide and direct band gap of the doped alumina predicts that it can efficiently be used in optoelectronic devices. The optical properties of the compounds like dielectric functions and energy loss function are also calculated. The rhombohedral structure of theα-Al2-x CoxO3(x = 0.0, 0.167) compounds reveal the birefringence properties.  相似文献   

12.
陈中钧  田东斌 《中国物理 B》2010,19(11):117105-117105
This paper investigates the electronic and optical properties for pure and Ce 3+-doped CaS crystals by using the first-principles total energy calculations.The results show that CaS:Ce has a direct band gap of 2.16 eV,and the top of the valence band is determined by S 3p states and the bottom of the conduction band is determined by Ce 4f states,respectively.Our results validate that the yellow emission from CaS:Ce is produced by doped cerium and the green emission quenches at 12.5% cerium concentration.The Ce-S bond shows more covalent character than the Ca-S bond.  相似文献   

13.
王皓  殷亚茹  杨雄  郭艳蕊  张颖  严慧羽  王莹  怀平 《中国物理 B》2022,31(2):26102-026102
Based on the first-principles method,we predict two new stable BN allotropes:C12-BN and O16-BN,which belong to cubic and orthorhombic crystal systems,respectively.It is confirmed that both the phases are thermally and dynamically stable.The results of molecular dynamics simulations suggest that both the BN phases are highly stable even at high temperatures of 1000 K.In the case of mechanical properties,C12-BN has a bulk modulus of 359 GPa and a hardness of 43.4 GPa,making it a novel superhard material with potential technological and industrial applications.Electronic band calculations reveal that both C12-BN and O16-BN are insulators with direct band gaps of 3.02 e V and 3.54 e V,respectively.The XRD spectra of C12-BN and O16-BN are also simulated to provide more information for possible experimental observation.Our findings enrich the BN allotrope family and are expected to stimulate further experimental interest.  相似文献   

14.
Near-normal incident infrared reflectivity spectra of (100) MgAl2O4 spinel single crystal have been measured at different temperatures in the frequency region between 50 and 6000 cm^-1. Eight infrared-active phonon modes are identified, which are fitted with the factorized form of the dielectric function. The dielectric property and optical conductivity of the MgAl2O4 crystal are analysed. From TO/LO splitting, the effective Szigeti charges and Born effective charges at different temperatures are calculated for studying the ionicity and the effect of polarization. Based on the relationship between the (LO-TO)1 splitting, which represents the transverse and longitudinal frequencies splitting of the highest energy phonon band in the reflectivity spectrum, and the ionic-covalent parameter, the four main phonon modes are assigned. MgA1204 can be considered as a pure ionic crystal and its optical characters do not change with decreasing temperature, so it may be used as a suitable substrate for high-Tc superconducting thin films.  相似文献   

15.
The detailed theoretical studies of electronic,optical,and mechanical properties of γ-Bi_2Sn_2O_7 are carried out by using first-principle density functional theory calculations.Our calculated results indicate that γ-Bi_2Sn_2O_7 is the p-type semiconductor with an indirect band gap of about 2.72 e V.The flat electronic bands close to the valence band maximum are mainly composed of Bi-6s and O-2p states and play a key role in determining the electrical properties of γ-Bi_2Sn_2O_7.The calculated complex dielectric function and macroscopic optical constants including refractive index,extinction coefficient,absorption coefficients,reflectivity,and electron energy-loss function show that γ-Bi_2Sn_2O_7 is an excellent light absorbing material.The analysis on mechanical properties shows that γ-Bi_2Sn_2O_7 is mechanically stable and highly isotropic.  相似文献   

16.
The optoelectronic and magnetic properties of pure Ho Mn O3 and Ho0.67T0.33 Mn O3(T = La, Y) alloys in hexagonal phase are theoretically investigated by using the first-principles calculations. The investigations are performed by means of the density functional theory through using the spin polarized generalized gradient approximation plus the Hubbard potential(SPGGA + U, U eff= 3 eV). The studied material Ho MnO3 exhibits two indirect band gaps: 1.58 eV for the spinup state and 0.72 eV for the spin-down state along the S–G direction within the SPGGA + U approximation. It is found that the band gap of pure Ho Mn O3 for the spin-up state increases with increasing La and Y dopants. The results show that all of the studied materials have semi-metallic behaviors for the spin-up state and semiconducting character for the spin-down state. The substitutions of La and Y for Ho in Ho MnO3 cause the static dielectric constant(ε0) to increase in the x direction but to decrease in the z direction. The calculated optical conductivity spectrum of Ho MnO3 in a low energy range is in good agreement with the recent experimental data.  相似文献   

17.
We perform first-principles calculations to investigate the structural, magnetic, electronic, and mechanical properties of face-centered cubic (fcc) PuH 2 and fcc PuH 3 using the full potential linearized augmented plane wave method (FP-LAPW) with the generalized gradient approximation (GGA) and the local spin density approximation (LSDA) taking account of both relativistic and strong correlation effects. The optimized lattice constant a0 = 5.371  for fcc PuH2 and a0 = 5.343  for fcc PuH3 calculated in the GGA + sp (spin polarization) + U (Hubbard parameter) + SO (spin-orbit coupling) scheme are in good agreement with the experimental data. The ground state of fcc PuH3 is found to be slightly ferromagnetic. Our results indicate that fcc PuH2 is a metal while fcc PuH3 is a semiconductor with a band gap about 0.35 eV. We note that the SO and the strong correlation between localized Pu 5f electrons are responsible for the band gap of fcc PuH3 . The bonds for PuH2 have mainly covalent character while there are covalent bonds in addition to apparent ionicity bonds for PuH3 . We also predict the elastic constants of fcc PuH2 and fcc PuH3 , which were not observed in the previous experiments.  相似文献   

18.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

19.
The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ(Z = S, Se, and Te) were investigated using first-principles calculations within generalized gradient approximation based on the density function theory. The half-Heusler compounds show half-metallic properties with a half-metallic gap of 0.15 eV for CoCrS, 0.10 eV for CoCrSe, and 0.31 eV for CoCrTe at equilibrium lattice constant, respectively. The total magnetic moments are 3.00μB per formula unit, which agrees well with the Slater-Pauling rule. The half-metallicity,elastic constants, bulk modulus, shear modulus, Pough's ratio, Frantesvich ratio, Young's modulus, Poisson's ratio, and Debye temperature at equilibrium lattice constant and versus lattice constants are reported for the first time. The results indicate that the half-Heulser compounds CoCrZ(Z = S, Se, and Te) maintain the perfect half-metallic and mechanical stability within the lattice constants range of 5.18-5.43  for CoCrS, 5.09-5.61  for CoCrSe, and 5.17-6.42  for CoCrTe,respectively.  相似文献   

20.
Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3   总被引:1,自引:0,他引:1       下载免费PDF全文
张超  王春雷  李吉超  杨鲲 《中国物理》2007,16(5):1422-1428
We have performed first principles calculations of Fe-doped BaTiO3 and SrTiO3. Dopant formation energy, structure distortion, band structure and density of states have been computed. The dopant formation energy is found to be 6.8eV and 6.5eV for Fe-doped BaTiO3 and SrTiO3 respectively. The distances between Fe impurity and its nearest O atoms and between Fe atom and Ba or Sr atoms are smaller than those of the corresponding undoped bulk systems. The Fe defect energy band is obtained, which mainly originates from Fe 3d electrons. The band gap is still an indirect one after Fe doping for both BaTiO3 and SrWiO3, but the gap changes from Γ-R point to Γ-X point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号