首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张运炎  范广涵 《中国物理 B》2011,20(4):48502-048502
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InAlN electron blocking layer (EBL) are studied. The emission spectra,carrier concentration in the quantum wells (QWs),energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InAlN EBL performs better over a conventional LED with an AlGaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used.  相似文献   

2.
陈峻  范广涵  张运炎  庞玮  郑树文  姚光锐 《中国物理 B》2012,21(5):58504-058504
The performance of InGaN blue light-emitting diodes(LEDs) with different kinds of electron-blocking layers is investigated numerically.We compare the simulated emission spectra,electron and hole concentrations,energy band diagrams,electrostatic fields,and internal quantum efficiencies of the LEDs.The LED using AlGaN with gradually increasing Al content from 0% to 20% as the electron-blocking layer(EBL) has a strong spectrum intensity,mitigates efficiency droop,and possesses higher output power compared with the LEDs with the other three types of EBLs.These advantages could be because of the lower electron leakage current and more effective hole injection.The optical performance of the specifically designed LED is also improved in the case of large injection current.  相似文献   

3.
The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.  相似文献   

4.
The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.  相似文献   

5.
6.
张运炎  范广涵  章勇  郑树文 《物理学报》2011,60(2):28503-028503
采用软件理论分析的方法对p型及n型掺杂的GaN间隔层在InGaN/GaN多量子阱双波长发光二极管中对光谱调控作用进行模拟分析.分析结果表明,掺杂的GaN间隔层的引入,可以有效地控制各阱中的电子或空穴浓度,很好地解决了双波长发光二极管中两种阱发光强度不均的问题,并且通过控制阻挡层的厚度,可以调控两种阱中的载流子浓度,从而调控发光峰的相对强度.这些可以归因于掺杂GaN间隔层对电子或空穴的阻挡作用. 关键词: GaN 间隔层 数值模拟 双波长发光二极管  相似文献   

7.
刘小平  范广涵  张运炎  郑树文  龚长春  王永力  张涛 《物理学报》2012,61(13):138503-138503
采用APSYS软件研究了InGaN/GaN量子阱垒层掺杂变化对双波长 发光二极管发光光谱的调控问题. 在不同掺杂类型和浓度下对器件电子空穴浓度分布、 载流子复合速率、 能带结构、 发光光谱进行分析, 结果表明, 调节量子阱垒层n型和p型的掺杂浓度可以精确而有效地根据需要调控发光光谱, 解决发光光谱调控难的问题. 这些现象归因于掺杂的量子阱垒层对电子空穴分布的调控作用.  相似文献   

8.
Designs of p-doped in quantum well (QW) barriers and specific number of vertically stacked QWs areproposed to improve the optical performance of GaN-based dual-wavelength light-emitting diodes (LEDs).Emission spectra, carrier concentration, electron current density, and internal quantum efficiency (IQE)are studied numerically. Simulation results show that the efficiency droop and the spectrum intensityat the large current injection are improved markedly by using the proposed design. Compared with the conventional LEDs, the uniform spectrum intensity of dual-wavelength luminescence is realized when aspecific number of vertically stacked QWs is adopted. Suppression of electron leakage current and the promotion of hole injection efficiency could be one of the main reasons for these improvements.  相似文献   

9.
GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one.  相似文献   

10.
We investigate the effect of a 100 nm-thick NiZn alloy (10 wt% Zn) capping layer on the thermal and electrical properties of Ag reflectors (200 nm) for flip-chip light-emitting diodes (LEDs). It is shown that the introduction of the NiZn capping layer minimizes the formation of interfacial voids and surface agglomeration. Furthermore, LEDs fabricated with the NiZn-capping-layer-combined contacts produce better output power as compared to those with the Ag only reflectors. For example, the LEDs with the 400 °C-annealed Ag/NiZn contacts give higher output power by ∼36% than those with the 400 °C-annealed Ag only contacts. X-ray photoemission spectroscopy and Auger electron spectroscopy measurements are performed to understand the improved electrical properties of the LEDs fabricated with the NiZn-capping-layer-combined Ag contacts.  相似文献   

11.
陈峻  范广涵  张运炎 《物理学报》2012,61(17):178504-178504
采用软件理论分析的方法对渐变型量子阱垒层厚度的InGaN双波长发光二极(LED)的载流子浓度分布、 能带结构、自发发射谱、内量子效率、发光功率及溢出电子流等进行研究.分析结果表明, 增大量子阱垒层厚度会影响空穴在各量子阱的注入情况, 对双波长LED各量子阱中空穴浓度分布的 均衡性及双波长发光光谱的调控起到一定作用,但会导致内量子效率严重下降; 而当以特定的方式从n电极到p电极方向递减渐变量子阱垒层厚度时, 活性层量子阱的溢出电子流 得到有效的控制, 双发光峰强度达到基本一致, 同时芯片的内量子效率下降得到了有效控制, 且具备大驱动电流下较好的发光特性.  相似文献   

12.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.  相似文献   

13.
The efficiency enhancement of an InGaN light-emitting diode(LED) with an AlGaN/InGaN superlattice(SL)electron-blocking layer(EBL) is studied numerically,which involves the light-current performance curve,internal quantum efficiency electrostatic field band wavefunction,energy band diagram carrier concentration,electron current density,and radiative recombination rate.The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram,which is favorable for the injection of holes and confinement of electrons.Additionally,the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

14.
The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

15.
分别对3种不种电子阻挡层的蓝光AlGaN LED进行数值模拟研究。3种阻挡层结构分别为传统AlGaN电子阻挡层,AlGaN-GaN-AlGaN电子阻挡层和Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层。此外对这对三种器件的活性区的载流子浓度、能带图、静电场和内量子效率进行比较和分析。研究结果表明,相较于传统AlGaN和AlGaN-GaN-AlGaN两种电子阻挡层的LED,具有Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层结构的LED具有较高的空穴注入效率、较低的电子外溢现象和较小的静电场(活性区)。同时,具有Al组分渐变的AlGaN-GaN-AlGaN电子阻挡层结构的LED的efficiency droop现象也得到一定的缓解。  相似文献   

16.
We investigate the performances of the near-ultraviolet(about 350 nm-360 nm) light-emitting diodes(LEDs) each with specifically designed irregular sawtooth electron blocking layer(EBL) by using the APSYS simulation program.The internal quantum efficiencies(IQEs),light output powers,carrier concentrations in the quantum wells,energy-band diagrams,and electrostatic fields are analyzed carefully.The results indicate that the LEDs with composition-graded pAl_xGa_(1-x)N irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs.The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface,which results in less electron leakage and better hole injection efficiency,thus reducing efficiency droop and enhancing the radiative recombination rate.  相似文献   

17.
The effect of polarization-matched AlGaInN electron-blocking layer and barrier layer on the optical performance of blue InGaN light-emitting diodes is numerically investigated. The polarization-matched AlGaInN electron-blocking layer and barrier layer are employed in an attempt to reduce the polarization effect inside the active region of the light-emitting diodes. The simulation results show that the polarization-matched AlGaInN electron-blocking layer is beneficial for confining the electrons inside the quantum well region. With the use of both polarization-matched AlGaInN electron-blocking layer and barrier layer, the optical performance of blue InGaN light-emitting diodes is greatly improved due to the increased overlap of electron and hole wavefunctions. The method proposed in this paper can also be applied to the light-emitting diodes operating in other spectral range.  相似文献   

18.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

19.
张运炎  范广涵 《物理学报》2011,60(1):18502-018502
采用软件理论分析的方法对不同掺杂类型的GaN间隔层和量子阱垒层在InGaN/GaN多量子阱双波长发光二极管中对发光光强、内量子效率、电子空穴浓度分布、溢出电流等作用进行模拟分析. 分析结果表明,p型掺杂的GaN间隔层与量子阱垒层的引入同不掺杂和n型掺杂两种类型比较,可以大大减少溢出电子流,极大地提高各量子阱内空穴浓度,提高双波长发光二极管的发光强度,极大的改善内量子效率随电流增大而下降问题. 关键词: GaN 掺杂类型 数值模拟 双波长发光二极管  相似文献   

20.
The AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with p-hBN layer are investigated numerically. In comparison with the conventional AlGaN DUV LEDs, the proposed LED can significantly improve the carrier injection, radiative efficiency, as well as the electroluminescence (EL) intensity under the same applied forward bias. Simultaneously, the light extraction efficiency in the LED using p-hBN instead of p-AlGaN exhibits a more than 250% increase at the applied voltage of 7.5 V due to the smaller loss of reflection and absorption of the emitted light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号