首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
磁性Fe_3O_4-聚吡咯纳米微球的合成与表征   总被引:32,自引:3,他引:32  
报道了具有核壳结构的Fe3O4 聚吡咯磁性纳米微球的合成方法和表征结果 .微球同时具有导电性和磁性能 .在优化的实验条件下 ,可得到饱和磁化强度为 2 3 4emu g ,矫顽力为 45 2Oe的磁性微球 .微球的导电性随着微球中Fe3O4含量的增加而下降 .微球的磁性能则随着Fe3O4含量的增加而增大 .Fe3O4磁流体的粒径和磁性聚吡咯微球的粒径均在纳米量级 .纳米Fe3O4粒子能够提高复合物的热性能 .实验表明 ,磁流体和聚吡咯之间存在着一定的相互作用 ,正是这种相互作用使磁性聚吡咯纳米微球的热稳定性提高 .  相似文献   

2.
分散聚合法制备液相芯片聚苯乙烯磁性复合微球的研究   总被引:1,自引:0,他引:1  
本文将丙烯酸基磁流体均匀分散到苯乙烯单体中,采用分散聚合法制备出了适于构建液相芯片微球载体的单分散性微米级磁性微球.考察了丙烯酸基磁流体预处理时间、加料顺序和单体量对微球形貌和粒径分布的影响及其条件优化.扫描电镜(SEM)显示磁性微球平均粒径为7.77 μm,具有良好的单分散性(多分散指数PDI为1.03),并且表面光滑致密;用超导量子干涉磁强计测量了Fe3O4纳米粒子的磁化曲线;用红外光谱(FT-IR)和热失重(TG)方法表征了磁性微球的化学结构及Fe3O4含量.  相似文献   

3.
采用一种新的溶液生长法结合多步包覆法在自制的不同粒径SiO2单分散亚微球表面包覆不同厚度的β-FeOOH涂层,得到单分散β-FeOOH/SiO2核壳结构亚微球.实验结果表明,SiO2核心颗粒尺寸对表面涂层的形态和包覆均匀性有很大影响.当SiO2核心颗粒的平均粒径为250 nm左右时,β-FeOOH表面涂层均匀,颗粒间团聚较少,一次包覆后涂层厚度约为35 nm.涂层中β-FeOOH纳米棒的尺寸随着所选SiO2核心颗粒粒径的增大而相应增大.经多次包覆能够显著提高涂层的厚度,3次包覆后β-FeOOH表面涂层厚约100 nm.β-FeOOH/SiO2核壳结构亚微球与质量分数5%的NaOH溶液反应后,于600℃焙烧2 h得到了单分散α-Fe2O3空心微球.单分散α-Fe2O3空心亚微球表层是由α-Fe2O3纳米棒搭建而成的三维网络结构,α-Fe2O3纳米棒的尺寸与核壳结构中β-FeOOH纳米棒的尺寸基本一致.  相似文献   

4.
生物高分子磁性微球作为性能优异的功能高分子材料在固定化酶、靶向药物、细胞分离和免疫分析等方面显示出强大的生命力。我们曾用凝胶-微乳液法化学剪裁技术制备了明胶包裹的复合磁性微粒,本文用共沉淀法制备磁性Fe3O4微晶作为磁性内核,明胶为包裹材料,  相似文献   

5.
以淀粉为表面活性剂,利用乙二醇溶剂热法一步制备了Fe3O4纳米簇球.采用X射线衍射仪、傅立叶变换红外光谱仪、扫描电镜等分析了产物的结构;采用热重分析仪测定了其热稳定性.结果表明:所得产物为直径约为230nm的簇球结构,构成簇球的纳米粒子直径约为10nm;引入淀粉成功地改善了产物的纳米结构和表面性能.合成的Fe3O4纳米簇球具有独特的结构和表面性能,在生物领域具有潜在的应用前景.  相似文献   

6.
四氧化三铁(Fe3O4)的水溶液分散性是影响其在生物医学中使用效果的关键因素。以FeSO4和乙二醇为原料,通过柠檬酸根离子改性,采用水热法合成了水溶液分散性良好的Fe3O4粒子。采用X-射线衍射(XRD)、扫描电镜(SEM)和红外光谱(FT-IR)分析等测试手段对制备的Fe3O4的物相、形貌、尺寸、表面吸附官能团进行了表征。研究了柠檬酸盐对样品形貌、尺寸、结晶性和水溶液分散性的影响。与未改性的Fe3O4相比,柠檬酸盐改性后的Fe3O4粒子表现出优异的水溶液分散性。  相似文献   

7.
热解-还原法制备单分散Fe3O4亚微空心球   总被引:3,自引:0,他引:3  
闫共芹  官建国  王维 《物理化学学报》2007,23(12):1958-1962
在用模板法水解FeCl3制备单分散聚(苯乙烯-共-丙烯酸)/Fe2O3[P(St-co-AA)/Fe2O3]核壳粒子的基础上, 于N2环境下热解内核直接得到了单分散的磁性Fe3O4亚微空心球. 用透射电镜(TEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)、振动样品磁强计(VSM)表征并测试了空心微球的结构形貌、成分以及静磁性能. 结果表明, P(St-co-AA)/Fe2O3核壳粒子在热处理过程中, 由于内核热解生成的有机小分子将Fe2O3 壳层同时还原为Fe3O4, 从而生成了粒径和壁厚均匀的单分散Fe3O4亚微空心球. 该空心微球在室温下的饱和磁化强度、剩余磁化强度和矫顽力分别为50.91 A·m2·kg-1、3.97 A·m2·kg-1和2.33 kA·m-1.  相似文献   

8.
以PVA为骨架材料,戊二醛为交联剂,盐酸为催化剂,通过乳化-化学交联法,在W/O型的乳状液中制备了磁性高分子微球--Fe3O4/交联PVA复合微球.并用SEM,光学显微镜,TG等技术对微球进行表征,考察了不同的盐酸加入方式对微球形貌的影响.  相似文献   

9.
用原硅酸乙酯对Fe3O4纳米粒子进行表面改性得到Fe3O4/SiO2磁流体.在Fe3O4/SiO2磁流体存在下,以1,1-二苯基乙烯(DPE)为自由基聚合控制剂,利用乳液聚合法制备了Fe3O4/SiO2/P(AA-MMA-St)核-壳磁性复合微球.用红外光谱(FTIR)、振动样品磁强计(VSM)、透射电镜(TEM)、X光电子能谱(XPS)、热重分析(TGA)、示差扫描量热仪(DSC)对所制备的磁流体、磁性高分子复合微球的结构、形态、性能进行了表征.研究发现,原硅酸乙酯水解后能在Fe3O4表面形成硅膜保护层从而避免Fe3O4的酸蚀,使Fe3O4/SiO2/P(AA-MMA-St)复合微球的比饱和磁化强度比同样条件下制备的Fe3O4/P(AA-MMA-St)微球提高了28%;DPE能有效控制自由基在Fe3O4/SiO2磁流体表面均匀地引发单体聚合,得到平均粒径为422 nm,无机粒子含量为40%,比饱和磁化强度为34.850 emu/g,表面羧基含量为0.176 mmol/g的磁性复合微球.  相似文献   

10.
内部结构不对称复合微球是指无机粒子在复合微球内部呈现规律性、不对称分布的一类微球.采用细乳液聚合的方法一步合成了平均粒径0.8μm、磁含量为46.67%、比饱和磁化强度为23.20 emu/g的内部结构不对称PSt/Fe3O4磁性复合微球.详细考察了Fe3O4纳米粒子表面修饰剂含量、乳化剂、助乳化剂、超分散剂、细乳化时间等因素对于复合微球形貌的影响,探讨了内部结构不对称复合微球的形成机理.同时通过TEM(透射电子显微镜),FTIR(红外光谱),VSM(振动样品磁强计),TG(热失重分析)以及激光粒度仪等表征手段对微球内部形貌、磁化强度及粒径等进行了表征,确定Fe3O4纳米粒子表面性质是微球呈现内部结构不对称的决定性因素.  相似文献   

11.
赵方圆  张宝林 《应用化学》2012,29(2):186-190
以甲氧基聚乙二醇同时作为溶剂、还原剂及修饰剂,在高温下分解乙酰丙酮铁,制备了纳米Fe3O4粒子,采用透射电子显微镜和X射线衍射分析表征材料的形貌和相组成,傅里叶变换红外光谱仪表征材料的表面修饰物,超导量子干涉仪测试合成的纳米粒子的磁性能,纳米粒度与zeta电势分析仪测试磁性纳米粒子在水中的zeta电势。 结果表明,纳米Fe3O4粒子的大小为(10.1±1.6) nm,粒度均一,单分散性好,在300 K下具有超顺磁性,饱和磁化强度为45 A·m2/kg。 红外结果表明,-COO-共价结合在粒子表面。 zeta电势为-25 mV。 其在水中的稳定性与以三甘醇为反应介质、高温分解法制备的纳米Fe3O4粒子作比较,表现出长时间(60 d以上)的良好分散性。 静电作用及空间位阻效应是其高稳定分散性的原因。  相似文献   

12.
A series of LaAl1-xFexO3 catalysts prepared with lanthanum nitrate, aluminium nitrate and iron nitrate was investigated in catalytical syntheses of carbon nanotubes with high yields and purity. The properties of carbon nanotubes prepared by the method of CVD(chemical vapor deposition) with n-hexane as the carbon resource were studied and it was shown that the diameter of carbon nanotubes can be controlled by the molar ratio of iron to aluminum in the catalysts and that the diameter of carbon nanotubes changes a little with the decrease of the iron content in the catalysts. From the TEM pictures of carbon nanotubes, it can be found that the LaAl1-xFexO3 catalysts have a significant influence on the wall thickness of the carbon nanotubes, whereas they have little influence on the inner diameter of the carbon nanotubes.  相似文献   

13.
杨杰  李玉禾  胡海龙 《物理化学学报》2015,31(11):2207-2212
通过探讨氧化钛纳米线阵列反应机制,建立了在水热条件下,氧化钛纳米线阵列在亲水掺铟氧化锡表面上由极性/非极性溶剂体系中形成的胶束内反应并生长的模型.并由此利用微胶束的尺寸限制作用,通过温度对微胶束尺寸进行调节,以及Cl-离子的晶面限制效应,实现了在较大范围内对纳米线直径的调控.另外反应体系中极性与非极性溶液的比例的变化对纳米阵列的直径影响不大,因此可以认为在此反应体系中,氧化钛纳米线的直径主要受到微胶束的限域效应以及Cl-离子的晶面限制效应影响.此方法可应用于其他相关氧化物纳米材料的尺寸控制合成中.  相似文献   

14.
以Bi(NO_3)_3·5H_2O和Fe(NO_3)_3·9H_2O为反应原料,KOH为矿化剂,通过在碱浓度为2~7 mol/L、反应温度为140~220℃的磁场水热反应系统中保温1~12 h制备了Bi Fe O_3粉体.研究发现,外加磁场可以拓宽合成纯相Bi Fe O_3的碱浓度和反应温度范围,更易得到纯相铁酸铋粉体.SEM观测结果表明,通过改变磁场强度可有效控制Bi Fe O_3粉体的颗粒尺寸及形貌:随着磁场的增强,Bi Fe O_3的颗粒尺寸逐渐减小.随着颗粒尺寸的减小,其光催化活性增强.磁场下得到的粉体表现出较强的磁性,Raman散射中A_1-2振动模式异常增强.  相似文献   

15.
磁性微胶囊的制备及其药物缓控释性能   总被引:2,自引:0,他引:2  
用乳液-凝胶法制备了磁性壳聚糖/海藻酸钠微胶囊. 在壳聚糖/海藻酸钠微胶囊中掺入Fe3O4磁性中空球, 使微胶囊具有磁靶向性能. 以头孢拉定作为模型药物研究了载药磁性微胶囊的载药量、包封率及药物缓控释性能等. 结果表明, 提高头孢拉定的初始浓度可以提高载药量, 却不利于提高药物的包封率. 所制备的微胶囊在各种缓冲溶液中长时间内具有显著的缓释效果, 并具有pH 刺激响应释放的性能, 即在模拟胃液中的药物释放率大大降低, 而在模拟体液和肠液中的释放时间大大延长, 可达50 h以上. 另外, 在外加磁场作用下, 微胶囊表现出良好的磁定向运动性能, 为磁靶向药物输送提供基础.  相似文献   

16.
Electrochemical determination of nitrite in real water samples is achieved using simple and efficient electrochemical sensor. The sensor is fabricated by electrodeposition of a thin layer of poly(3,4-ethylenedioxythiophene) sandwiched by drop-casting two thin layers of CNTs and iron oxide nanoparticles (Fe3O4) over a GC electrode surface. Voltammetry determination of nitrite in tap water and wastewater samples in the concentration range (0.5–150 μM) is successfully achieved with detection limits of 22 and 24 nM, respectively. Practical application of the GC/CNT/PEDOT/Fe3O4 sensor is efficiently assessed in real water samples for nitrite determination with acceptable recoveries, excellent anti-interference ability and long-term stability.  相似文献   

17.
首次采用砂磨法制备了导电态聚苯胺(PANI), 通过循环伏安和电导率的测试分析, 探讨了转速(N)、反应时间(t)、盐酸(HCl)浓度、十二烷基苯磺酸钠(SDBS)浓度和过硫酸铵(APS)浓度对产物氧化还原性及导电性能的影响|并采用红外光谱(FT-IR)对产物结构进行了表征. 结果表明: 当N为400 r/min, t为2 h, HCl与苯胺(An)的摩尔比(nHCl/nAn)为4∶1, SDBS与An的摩尔比(nSDBS/nAn)为1∶1, APS与An的物质的量比(nAPS/nAn)为0.8∶1时, 产物的各项性能达到最佳值|且砂磨法与乳液法制备的PANI结构相符, 电化学性能接近, 但是砂磨法的生产成本和环保优势十分显著(砂磨法的反应时间仅为乳液法的1/3, 用水量仅为乳液法的1/2).  相似文献   

18.
Homogeneous cordierite has been synthesized at low cost by talc-magnesite and coal gangue as the main raw materials. The mechanism of synthesizing cordierite under such a com- posing system of raw materials, and the effect of temperature on the crystal cell parameters and microstructure and thermal expansion coefficient of cordierite crystal have been studied via testing methods of XRD, SEM, etc. The result shows that the homogeneous cordierite can be synthesized by the systematic composing materials of “talc-magnesite—coal gangue—talc” with heat pre- servation at 1350 ℃ for 1 h; as the keeping time is prolonged, Al3+ and Mg2+ in cordierite crystal are replaced by a few impurity ions such as Fe3+, Fe2+, etc., and the crystal cell parameters of cordierite present an increase trend; as the high-temperature heat preservation is prolonged, the content of glassy phase in the sample is increased, its density is improved, and its thermal expansion coeffi- cient presents an increase trend.  相似文献   

19.
采用溶剂热法制备了单分散Mn0.6Zn0.4Fe2O4磁性亚微米球, 研究了反应工艺参数对磁性亚微米球结构形貌、 直径和静磁性能的影响规律. 研究发现, 随着反应时间的延长, 体系中的金属离子首先水解沉淀, 形成羟基氧化铁及Mn, Zn氢氧化物, 然后脱水转化为Mn0.6Zn0.4Fe2O4球形纳米粒子, 这些纳米粒子发生团聚, 形成结构疏松、 大小不均匀的亚微米粒子, 最后通过Ostwald熟化过程, 形成致密的单分散亚微米球. 降低反应溶液的pH值、 增加乙二醇或聚乙二醇的用量, 均会使亚微球的直径增大, 并可在150~500 nm范围内调控微球的粒径; 但组成磁性亚微球的纳米粒子的粒径逐渐减小, 产物的饱和磁化强度增大, 矫顽力和剩磁减小.  相似文献   

20.
A series of high density polyethylenes (HDPE) were synthesized via homogeneous polymerization with metallocene catalyst in two different reactors (glass and stainless steel). The thermal and mechanical properties of the polyethylenes, synthesized with two types of reactor and different reaction parameters, are discussed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号