首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinh  Pham Duc 《Meccanica》2002,37(6):503-514
Explicit bounds on the elastic moduli of completely random planar polycrystals, the shape and crystalline orientations of the constituent grains of which are uncorrelated, are derived and calculated for a number of crystals of general two-dimensional anisotropy. The bounds on the elastic two-dimensional bulk modulus happen to coincide with the simple third order (in anisotropy contrast) bounds for the subclass of idealistic circular cell polycrystals. The bounds on the shear modulus are close to the much simpler bounds for circular cell polycrystals, which approximate aggregates of equiaxed grains.  相似文献   

2.
Our earlier derived bounds on the elastic moduli of two-dimensional random polycrystals [1, 2] involve a geometric restriction through an assumption on the form of an isotropic eight-rank tensor. The general form of the tensor is used in this study to reconstruct the bounds, which are expected to approach the scatter range for the moduli of the irregular aggregate.  相似文献   

3.
Peselnick, Meister, and Watt have developed rigorous methods for bounding elastic constants of random polycrystals based on the Hashin-Shtrikman variational principles. In particular, a fairly complex set of equations that amounts to an algorithm has been presented previously for finding the bounds on effective elastic moduli for polycrystals having hexagonal, trigonal, and tetragonal symmetries. A more analytical approach developed here, although based on the same ideas, results in a new set of compact formulas for all the cases considered. Once these formulas have been established, it is then straightforward to perform what could be considered an analytic continuation of the formulas (into the region of parameter space between the bounds) that can subsequently be used to provide self-consistent estimates for the elastic constants in all cases. This approach is very similar in spirit but differs in its details from earlier work of Willis, showing how Hashin-Shtrikman bounds and certain classes of self-consistent estimates may be related. These self-consistent estimates always lie within the bounds for physical choices of the crystal elastic constants and for all the choices of crystal symmetry considered. For cubic symmetry, the present method reproduces the self-consistent estimates obtained earlier by various authors, but the formulas for both bounds and estimates are generated in a more symmetric form. Numerical values of the estimates obtained this way are also very comparable to those found by the Gubernatis and Krumhansl coherent potential approximation (or CPA), but do not require computations of scattering coefficients.  相似文献   

4.
Explicit expressions of the upper and lower estimates on the macroscopic elastic moduli of random trigonal polycrystals are derived and calculated for a number of aggregates, which correct our earlier results given in Pham [Pham, D.C., 2003. Asymptotic estimates on uncertainty of the elastic moduli of completely random trigonal polycrystals. Int. J. Solids Struct. 40, 4911–4924]. The estimates are expected to predict the scatter ranges for the elastic moduli of the polycrystalline materials. The concept of effective moduli is reconsidered regarding the macroscopic uncertainty of the moduli of randomly inhomogeneous materials.  相似文献   

5.
Minimum energy and complementary energy principles are used to derive the upper and lower bounds on the effective elastic moduli of statistically isotropic multicomponent materials in d (d=2 or 3) dimensions. The trial fields, involving harmonic and biharmonic potentials, and free parameters to be optimized, lead to the bounds containing, in addition to the properties and volume proportions of the material components, the three-point correlation information about the microgeometries of the composites. The relations and restrictions among the three-point correlation parameters are explored. The upper and lower bounds are specialized to symmetric cell materials and asymmetric multi-coated spheres, which are optimal or even converge in certain cases. New bounds for random cell polycrystals are constructed with particular results for random aggregates of cubic crystals.  相似文献   

6.
A linear-comparison homogenization technique and its relaxed version are used to compute bounds of the Hashin–Shtrikman and the self-consistent types for the hydrostatic strength of ideally plastic voided polycrystals. Closed-form analytical results are derived for isotropic aggregates of various cubic symmetries (fcc, bcc, ionic). The impact of the variational relaxation on the bounds is found to be significantly larger than that previously observed in fully dense polycrystals. So much so that, quite surprisingly, relaxed self-consistent bounds are found to be weaker than non-relaxed Hashin–Shtrikman bounds in some of the material systems considered.  相似文献   

7.
Bounds have been developed for the elastic moduli of completely random planar polycrystals, the shape and crystalline orientations of the constituent grains of which are supposed to be uncorrelated. Explicit results for the aggregates of orthotropic crystals are demonstrated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
In the paper the theoretical analysis of bounds and self-consistent estimates of overall properties of linear random polycrystals composed of arbitrarily anisotropic grains is presented. In the study two invariant decompositions of Hooke’s tensors are used. The applied method enables derivation of novel expressions for estimates of the bulk and shear moduli, which depend on invariants of local stiffness tensor. With use of these expressions the materials are considered for which at the local level constraints are imposed on deformation or some stresses are unsustained.  相似文献   

9.
This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable) strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The simplest form of the bounds presented is obtained by combining recent results for single crystals with a homogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the development of a more detailed analysis, leading to improved polycrystalline bounds that are notably consistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and the results are compared with lower bounds obtained by considering laminate textures.  相似文献   

10.
Despite advances in contemporary micromechanics, there is a void in the literature on a versatile method for estimating the effective properties of polycrystals comprising of highly anisotropic single crystals belonging to lower symmetry class. Basing on variational principles in elasticity and the Hill–Mandel homogenization condition, we propose a versatile methodology to fill this void. It is demonstrated that the bounds obtained using the Hill–Mandel condition are tighter than the Voigt and Reuss [1], [2] bounds, the Hashin–Shtrikman [3] bounds as well as a recently proposed self-consistent estimate by Kube and Arguelles [4] even for polycrystals with highly anisotropic single crystals.  相似文献   

11.
Upper and lower bounds on the effective conductivity of statistically isotropic multicomponent materials in d dimensions (d=2 or 3) are constructed from the minimum energy principles and appropriate trial fields. The trial fields, involving harmonic potentials and free parameters to be optimized, lead to the bounds containing up to three-point correlation information about the microgeometry of a composite. The bounds are applied to give estimates for the symmetric cell materials, which are optimal over some ranges of parameters, and asymmetric multicoated spheres, which yield the exact effective conductivity in certain cases. The results also agree with many known ones. New bounds for random cell polycrystals are obtained and illustrated on a number of polycrystalline aggregates.  相似文献   

12.
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective elastic moduli are analyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.  相似文献   

13.
The calculation of the effective elastic moduli of inhomogeneous solids, which connect the stresses and strains averaged for the material, is accompanied by certain mathematical difficulties owing to correlation relationships of arbitrary orders. Neglect of correlation relationships leads to average elastic moduli, where averaging according to Voigt and Reuss establishes boundaries containing the effective elastic moduli [1]. Approximate values of the latter can be found by taking into account the correlation relationships of the second order in both calculation schemes [2, 3]. Another method of evaluating the true moduli consists of narrowing the boundaries of Voigt and Reuss on the basis of model representations [4-6]. The approximate effective elastic moduli for a series of polycrystals with various common-angle values are presented in [7]. An analysis of the effect of the correlation relationships between the grains of a mechanical mixture of isotropic components on the effective elastic moduli is carried out in [8], although in all the papers just mentioned the use of correlative corrections to narrow the range of elastic moduli is not investigated. Below it is shown that the calculation of the correlation corrections in the second approximation allows the range for the effective moduli to be narrowed.  相似文献   

14.
We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.  相似文献   

15.
Many composite materials, widely used in different engineering fields, are characterized by random distributions of the constituents. Examples range from polycrystals to concrete and masonry-like materials. In this work we propose a statistically-based scale-dependent multiscale procedure aimed at the simulation of the mechanical behavior of a two-phase particle random medium and at the estimation of the elastic moduli of the energy-equivalent homogeneous micropolar continuum. The key idea of the procedure is to approach the so-called Representative Volume Element (RVE) using finite-size scaling of Statistical Volume Elements (SVEs). To this end properly defined Dirichlet, Neumann, and periodic-type non-classical boundary value problems are numerically solved on the SVEs defining hierarchies of constitutive bounds. The results of the performed numerical simulations point out the importance of accounting for spatial randomness as well as the additional degrees of freedom of the continuum with rigid local structure.  相似文献   

16.
17.
The paper deals with the effective linear elastic behaviour of random media subjected to inhomogeneous mean fields. The effective constitutive laws are known to be non-local. Therefore, the effective elastic moduli show dispersion, i.e1 they depend on the “wave vector” k of the mean field. In this paper the well-known Hashin-Shtrikman bounds (1962) for the Lamé parameters of isotropic multi-phase mixtures are generalized to inhomogeneous mean fields k ≠ 0. The bounds involve two-point correlations of random elastic moduli. In the limit k → ∞ the bounds converge to the exact result. The interest is focussed on composites with cell structures and on binary mixtures. To illustrate the results, numerical evaluations are carried out for a binary cell material composed of nearly spherical grains of equal size.  相似文献   

18.
New upper and lower bounds are constructed for the elastic moduli of a class of isotropic composites with perfectly-random microgeometries ([1–3]), which improve upon the bounds on the elastic shear modulus given in [1].  相似文献   

19.
We review the theoretical bounds on the effective properties of linear elastic inhomogeneous solids (including composite materials) in the presence of constituents having non-positive-definite elastic moduli (so-called negative-stiffness phases). Using arguments of Hill and Koiter, we show that for statically stable bodies the classical displacement-based variational principles for Dirichlet and Neumann boundary problems hold but that the dual variational principle for traction boundary problems does not apply. We illustrate our findings by the example of a coated spherical inclusion whose stability conditions are obtained from the variational principles. We further show that the classical Voigt upper bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites applies and that it imposes a stability condition: overall stability requires that the effective moduli do not surpass the Voigt upper bound. This particularly implies that, while the geometric constraints among constituents in a composite can stabilize negative-stiffness phases, the stabilization is insufficient to allow for extreme overall static elastic moduli (exceeding those of the constituents). Stronger bounds on the effective elastic moduli of isotropic composites can be obtained from the Hashin–Shtrikman variational inequalities, which are also shown to hold in the presence of negative stiffness.  相似文献   

20.
The linear orthotropic relations between stress and infinitesimal strain require only seven, instead of the usual nine, independent elastic moduli, and one of them can be identified as a bulk modulus coincident with that common to all the grains. Each of the remaining six overall moduli is placed between upper and lower, “Voigt-Reuss-Hill”, and also “Hashin- Shtrikman”, bounds, in terms of the grain moduli and of three measurable parameters that take account of the particular mix of lattice orientations. One or more of them can be determined at once in exceptional cases where the grains all have a particular fixed or somewhat variable lattice orientation: the upper and lower bounds come to the appropriate coincidence then. Generally the vagaries of the configuration have an influence in keeping each pair of bounds apart, but effective estimates of the overall elastic moduli can be offered, except perhaps when the grains have a very pronounced cubic anisotropy. We shall refer in particular to the more symmetrical, tetragonal and transversely isotropic, textures for which correspondingly fewer overall moduli and orientation parameters are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号