首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The nanogranular nature of C-S-H   总被引:6,自引:0,他引:6  
Despite its ubiquitous presence as binding phase in all cementitious materials, the mechanical behavior of calcium-silicate-hydrates (C-S-H) is still an enigma that has deceived many decoding attempts from experimental and theoretical sides. In this paper, we propose and validate a new technique and experimental protocol to rationally assess the nanomechanical behavior of C-S-H based on a statistical analysis of hundreds of nanoindentation tests. By means of this grid indentation technique we identify in situ two structurally distinct but compositionally similar C-S-H phases heretofore hypothesized to exist as low density (LD) C-S-H and high density (HD) C-S-H, or outer and inner products. The main finding of this paper is that both phases exhibit a unique nanogranular behavior which is driven by particle-to-particle contact forces rather than by mineral properties. We argue that this nanomechanical blueprint of material invariant behavior of C-S-H is a consequence of the hydration reactions during which precipitating C-S-H nanoparticles percolate generating contact surfaces. As hydration proceeds, these nanoparticles pack closer to center on-average around two characteristic limit packing densities, the random packing limit (η=64%) and the ordered face-centered cubic (fcc) or hexagonal close-packed (hcp) packing limit (η=74%), forming a characteristic LD C-S-H and HD C-S-H phase.  相似文献   

2.
Chloride diffusivity in cementitious materials depends on the underlying microstructure and environmental conditions. The algorithms and implementation of the multiscale lattice Boltzmann-finite element scheme for prediction of chloride diffusivity in cementitious materials was described in detail in Part I (Zhang et al., 2013). Based on the obtained microstructures and the developed multiscale modelling scheme, chloride diffusivity in cementitious materials at the micro- and meso-scales, i.e. cement paste, mortar and concrete, are estimated and presented in Part II. The influences of w/c ratio, age, chloride binding, degree of water saturation, interfacial transition zone (ITZ) and aggregate content on chloride diffusivity are investigated in a quantitative manner. The simulations are validated with experimental data obtained from literature. The results indicate that the simulated chloride diffusivity in cementitious materials at each scale shows a good agreement with experimental data. In addition, the chloride binding, degree of water saturation, ITZ and aggregate content play significant roles in the chloride diffusivity in cementitious materials. The estimated chloride diffusivity in cementitious materials in this study accounting for the evolution of microstructure and environmental conditions can be directly used as input for the service life prediction of reinforced concrete structures.  相似文献   

3.
Quantifying high temperature damage is an issue that can hardly be dealt with experimentally because of the complexity of the loading control, of temperature and of moisture. The experimental investigation was carried out. The measurement of the mechanical characteristics (fracture energy, tensile strength, elastic modulus and thermal damage parameter) of five cementitious materials, cement paste, mortar, ordinary concrete and two HPC concretes were performed by three-point bending tests after heating/cooling cycles at 120, 250 and 400 °C. The tests showed that the cementitious materials behave almost identical when the fracture energy Gf is considered as a function of maximum temperature. The thermal damage due to heating from 120 to 400 °C increases the fracture energy by 50% with the reference tests at room temperature. A more tortuous crack surface is one reasonable explanation for the significant increase in Gf. It is demonstrated that the temperature exposure makes all cementitious materials tested significantly more ductile and less resistant.  相似文献   

4.
利用玄武岩纤维和水泥基材料,通过一定配比融合制成了在静态拉伸试验中呈现多缝开裂、应变硬化、极限拉伸应变0.5%以上的玄武岩纤维高延性水泥基复合材料(basalt fiber engineered cementitious composites, BF-ECCs)。用分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置对不同玄武岩纤维掺量的水泥基复合材料进行动态压缩和动态劈裂试验。结果表明:(1)在压、拉两种应力状态下,玄武岩纤维对水泥基复合材料的静态强度、动态强度均有增强,且高应变率下玄武岩纤维对抗压强度动态增幅较小,对劈裂强度动态增幅较大;(2) BF-ECC的抗压强度和劈裂强度均随应变率升高而显著提高,两者均可以采用动态增强因子(dynamic increase factor, DIF)反映动态强度的增幅,但劈裂强度的应变率敏感性强于抗压强度;(3)依据试验得到的普通水泥混凝土速率敏感性的CEB-FIP方程(2010)不适用于BF-ECCs。  相似文献   

5.
Rheological measurements were made on concrete and mortars to characterize the shear thickening behavior of certain concrete mix designs. Shear thickening reduction levers were found by selecting and designing admixtures. Since the shear-thickening phenomena occur at the scale of the finest particles, industrial limestone fillers were studied that behave like cementitious materials. Theories based on previous academic works were relevant. The shear stress-dependent effects of shear thickening and size scaling were very helpful to distinguish between surface interactions, such as lubrication and volumetric contributions and also including the packing effects. The suspension viscosity curves vary accordingly to the Newtonian viscosity of the solvent medium. In both the shear thinning and shear thickening regimes, viscosity is controlled by adjusting the amount of two specific admixtures. The reduction of friction between polymer-coated materials appears to be a key phenomenon to delay onset shear thickening in industrial processes.  相似文献   

6.
吴平  徐世烺  李庆华  周飞  陈柏锟  蒋霄  AL MANSOUR Ahmed 《爆炸与冲击》2021,41(7):075101-1-075101-14
为研究超高韧性水泥基复合材料(ultra-high toughness cementitious composites, UHTCC)在内埋炸药爆炸下的抗爆性能和损伤破坏规律,对不同炸药埋深下的UHTCC和高强混凝土(high-strength concrete, HSC)进行了内埋炸药抗爆实验。得到了两种材料靶体的破坏状态,并利用接触爆炸的实验结果计算出了两种材料的抗爆性能参数。结果表明,在相同条件下,UHTCC抗爆性能优于高强混凝土。为了进一步探究UHTCC的抗压强度、抗拉强度以及拉伸韧性对靶体在内埋炸药下抗爆性能的影响,首先,采用改进的K&C模型对炸药埋深为40 mm的超高韧性水泥基复合材料靶体进行数值模拟,模拟结果与实验结果基本吻合,并根据数值模拟的结果得到了爆炸冲击波沿靶体径向衰减速度大于轴向衰减速度这一规律,验证了数值模型的有效性;然后,通过调整改进K&C模型中与抗压强度、抗拉强度以及拉伸韧性相关的参数,数值预测了不同抗压强度、抗拉强度以及拉伸韧性下UHTCC靶体的破坏状态,发现增强UHTCC的韧性可以有效防止靶体发生整体性破坏,增大UHTCC的抗拉强度可以减小靶体迎爆面的开坑直径,增大UHTCC的抗压强度对减小开坑直径效果不明显。  相似文献   

7.
刘小宇  杨政  张慧梅 《力学学报》2022,54(6):1613-1629
针对现有尺寸效应模型难以体现准脆性材料完整的抗压强度尺寸效应变化规律及其内在机理, 本文通过分析准脆性材料单轴压缩破坏过程中能量输入、储存、整体和局部能量耗散, 建立体现整体和局部损伤的力学模型及描述上述能量演化过程的双线性名义和真实应力应变曲线, 在此基础上确定了名义应力最大时输入能量、储存弹性能、整体和局部能量耗散的表达式, 最后基于能量平衡原理建立抗压强度尺寸效应模型. 抗压强度能量平衡尺寸效应模型能完整体现名义抗压强度尺寸效应, 即随试样尺寸增大, 名义抗压强度在试样尺寸小于等于局部损伤区尺寸时为真实强度, 然后逐渐减小, 最终当试样尺寸趋于无穷大时趋于弹性极限强度; 抗压强度能量平衡尺寸效应模型也能同时体现高径比和试样直径对名义强度的影响, 其包含的参数具有明确的物理意义, 可以反映真实强度、弹性极限强度、名义损伤模量非线性、局部损伤区大小和方向对准脆性材料名义抗压强度尺寸效应的影响; 通过把抗压强度能量平衡尺寸效应模型和现有尺寸效应模型应用于预测各种材料尺寸效应试验和数值模拟数据, 结果表明: 抗压强度能量平衡尺寸效应模型能很好描述试验和数值模拟尺寸效应的非线性变化规律及内在机理, 和现有尺寸效应模型相比, 其总体平均误差最小, 且小于5%.   相似文献   

8.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

9.
在进行多组不同配比类岩石材料单轴压缩试验和巴西试验的基础上,详细分析了石膏水泥比和石英砂含量对类岩石材料的单轴抗压强度、抗拉强度及弹性模量等力学参数的影响规律,力图找到适合模拟现场砂质泥岩的类岩石材料及配合比。利用颗粒流程序(PFC)模拟,进一步研究了高径比和围压对类岩石材料力学特性的影响。结果表明:随着石膏水泥比的增大,抗压强度和弹性模量均逐渐减小,而抗拉强度逐渐增大;随着石英粉含量的增大,抗压强度和弹性模量均先增大后减小,而抗拉强度则为先减小后增大。结合单轴压缩过程的声发射特征,揭示了裂纹扩展与声发射有密切的关系。PFC2D模拟获得的力学参数与室内试验相近,破裂模式也与实际情况相似。通过尺寸效应的研究可知试样的高径比在2.0~2.5较合理。随着围压的增大,试样的峰值强度、残余强度、峰值应变及弹性模量等力学参数均增大,且围压会改变试样的破裂模式。  相似文献   

10.
Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing “gap”-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables biological nanocomposites to avoid local buckling so as to achieve global buckling at macroscopic scales through hierarchical design. These features are remarkably important for the mechanical functions of biological materials, such as bone, teeth and nacre, which often sustain large compressive load.  相似文献   

11.
Advanced technological achievements and the continuous growth of economy have made the disposal, recycle and reuse of industrial by-products a severe challenge. The cement industry is considered one of the key sectors in this effort in successfully (in terms of not extenuating but improving some of the properties of the final product) absorbing large quantities of solid wastes, either as aggregates or as secondary cementitious materials. This not only contributes to the creation of an energy and CO2-emission depository (as commonly used raw materials are spared), but also simultaneously alleviates the acute environmental burden caused by the irresponsible disposal of such by-products. In this study, the possibility of reusing spent fluid catalytic-cracking catalyst (FCC) as a supplementary cementing material (SCM) was examined. A series of tests were conducted, initially aiming at characterizing the material and thereafter evaluating its pozzolanic activity and its effect on the mechanical properties of blended cements. Major findings in this investigation revealed that the use of FCC as a mineral admixture in cement is feasible, strengthening the belief that siliceous glassy residues should represent a steady supply for the construction sector.  相似文献   

12.
粗集料对超高性能水泥基材料动态力学性能的影响   总被引:2,自引:0,他引:2  
戎志丹  孙伟 《爆炸与冲击》2009,29(4):361-366
采用大掺量超细工业废渣取代水泥、最大粒径为2.5 mm的天然砂取代粒径为600 m的磨细石英砂,并掺加了最大粒径为10 mm的高弹高强粗集料,制备出抗压强度达200 MPa的超高性能水泥基复合材料。并采用分离式霍普金森压杆装置对不同纤维掺量的钢纤维增强超高性能水泥基复合材料(ultra-high performance steel fiber reinforced cementitious composites, UHPSFRCC)试件进行了高速冲击压缩实验,研究了应变率和纤维掺量对该材料抗冲击性能的影响规律及粗集料发挥的作用。结果表明,UHPSFRCC的抗冲击能力随纤维掺量的增加而增强;动态强度随应变率的提高相应地增大;动态性能因掺入用作粗集料的玄武岩碎石而得到了相应的改善。还分析了超高性能水泥基复合材料具有高动态性能的机理。  相似文献   

13.
A micro-architected multifunctional structure, a sandwich panel heat pipe with a micro-scale truss core and arterial wick, is modeled and optimized. To characterize multiple functionalities, objective equations are formulated for density, compressive modulus, compressive strength, and maximum heat flux. Multiobjective optimization is used to determine the Pareto-optimal design surfaces, which consist of hundreds of individually optimized designs. The Pareto-optimal surfaces for different working fluids (water, ethanol, and perfluoro(methylcyclohexane)) as well as different micro-scale truss core materials (metal, ceramic, and polymer) are determined and compared. Examination of the Pareto fronts allows comparison of the trade-offs between density, compressive stiffness, compressive strength, and maximum heat flux in the design of multifunctional sandwich panel heat pipes with micro-scale truss cores. Heat fluxes up to 3.0 MW/m2 are predicted for silicon carbide truss core heat pipes with water as the working fluid.  相似文献   

14.
王永岩  李剑光 《实验力学》2013,28(2):242-246
为了解决岩石工程相似模型实验中传统相似材料难以模拟深部软岩低强度、大变形和强流变的问题,本文选用70#沥青(产量大、成本低、粘弹性、易成型、易软化等)和海砂作为深部软岩的相似模拟材料.采用连续加压法对其进行了单轴压缩实验,对不同配比下试件的密度、抗压强度及初始弹性模量进行分析,得到了该相似材料有关的原始数据和规律.本文初步验证了使用该相似材料模拟深部软岩的可行性,并针对不足之处给出一些合理改进建议,为进一步模型模拟实验提供指导.  相似文献   

15.
The compressive strength of unidirectional long fibre composites is predicted for plastic microbuckling from a random two-dimensional distribution of fibre waviness. The effect of the physical size of waviness is addressed by using couple stress theory, with the fibre bending resistance scaling with the fibre diameter d. The predicted statistical distribution of compressive strength is found using a Monte Carlo method. An ensemble of fibre waviness profiles is generated from an assumed spectral density of waviness and the compressive strength for each such realisation is calculated directly by the finite element method. The average predicted strength agrees reasonably with practical values, confirming the hypothesis that microbuckles can be initiated by fibre misalignment. It is found that the probability distribution of strength is well matched by a Weibull fit, and the dependence of the Weibull parameters upon the spectral density of waviness is determined. For the practical range of fibre distributions considered, it is concluded that the strength depends mainly upon the root mean square amplitude of fibre misalignment, with the shape of the power spectral density function playing only a minor role. An engineering model for predicting the compressive strength is proposed, akin to weakest link theory for materials containing flaws. A specimen containing randomly distributed waviness is examined to locate regions of high-fibre misalignment. The strength of each of these weak regions is estimated from a look-up table derived from calculations with idealised circular or elliptical patches of waviness. The strength of the composite is given by the failure stress associated with the weakest such patch. For random distributions of waviness, the predictions using this engineering approach are in good agreement with the direct calculations of strength using the finite element method.  相似文献   

16.
Increasingly fine spatial resolution in numerical models of brittle materials promises to improve prediction and characterization of dynamic failure in these materials. However, as the resolution of these numerical models begins to approach the material micro-scale, the associated discretization requires a definitive connection to the microstructure. In many cases a numerical model (e.g., a finite element mesh) that explicitly resolves each flaw within the material is not feasible for macro-scale analyses. As an alternative, each element can be treated as a meso-scale continuum with constitutive properties that reflect the characteristics of the underlying microstructure. Small scale elements will exhibit random variations in the constitutive properties as a result of the random variations in the number and types of flaws and the flaw sizes contained within each element. The present paper proposes a technique for assigning probability distributions to these element properties, which can be thought of as the meso-scale constitutive properties. In particular, the strain-rate dependent compressive uniaxial strength of a ceramic is modeled using a two-dimensional analytical model developed by Paliwal and Ramesh (2008). The effect on the probability distribution of meso-scale (or element-level) strength from flaw density, flaw size distribution, flaw clustering, and strain rate are studied. Higher strain rates, more flaw clustering, and decreasing element size all contribute to greater scatter in uniaxial compressive strength. Variations in flaw size increase the scatter in the strength more for low strain rate loadings and less clustered microstructures. The results provide interesting comparisons to the classical assumption of a two-parameter Weibull-distributed strength, showing that a three-parameter Weibull distribution and even a lognormal distribution fit better with the simulated strength data.  相似文献   

17.
为获得超低温冻土抗压强度预测模型, 探究超低温状态下冻土的物理性质及力学性质的变化, 对含水率19%, 22%, 25%和28%的低液限黏土土样进行?180 °C ~ ?10 °C的单轴压缩强度试验, 并测量?80 °C ~ ?10 °C土样的未冻水含量, 建立基于WOA-BP神经网络和BP神经网络的预测模型, 探究含水率、温度、未冻水含量与超低温冻土抗压强度关系. 预测结果表明: 含水率、温度、未冻水含量与超低温冻土抗压强度存在复杂的非线性关系, 特别是在?180 °C ~ ?80 °C区间内, 现有的线性拟合公式已无法准确预测该区间内冻土抗压强度; 基于WOA-BP神经网络预测模型的整体预测效果较好, 其绝对误差平均值为1.167 MPa, 相对误差平均值为7.62%, BP神经网络预测模型的绝对误差平均值为8.462 MPa, 相对误差平均值为47.99%. 基于鲸鱼优化算法的BP神经网络预测模型预测误差明显小于BP神经网络预测模型及线性拟合值, 更接近实测值. 该预测模型具有较高精确度, 能有效解决超低温冻土抗压强度与其影响因素间复杂的非线性关系, 可为人工冻结技术在地层应急工程中的应用提供参考.   相似文献   

18.
The random packing of tetrahedral particles is studied by applying the discrete element method (DEM), which simulates the effects of friction, height ratio, and eccentricity. The model predictions are analyzed in terms of packing density and coordination number (CN). It is demonstrated that friction has the maximal effect on packing density and mean CN among the three parameters. The packing density of the regular tetrahedron is 0.71 when extrapolated to a zero friction effect. The shape effects of height ratio and eccentricity show that the regular tetrahedron has the highest packing density in the family of tetrahedra, which is consistent with what has been reported in the literature. Compared with geometry-based packing algorithms, the DEM packing density is much lower. This demonstrates that the inter-particle mechanical forces have a considerable effect on packing. The DEM results agree with the published experimental results, indicating that the polyhedral DEM model is suitable for simulating the random packing of tetrahedral particles.  相似文献   

19.
岩盐用作路基填料的力学性质试验   总被引:1,自引:0,他引:1  
通过试验,研究了察尔汗岩盐用作路基填料的压实特性、抗压强度以及循环荷载下的变形性状。主要探讨了岩盐试样中细粒含量比例对试样压实特性的影响规律;天然岩盐抗压强度的大小分布,以及岩盐抗压强度与粒径、干密度、含水量的关系;交通循环荷载作用下,岩盐的动应变发展情况等。这些结论对盐湖公路建设具有一定的指导意义。  相似文献   

20.
徐香新 《力学季刊》2021,42(4):696-706
利用光固化立体成型技术(SLA)制备了不同相对密度的光敏树脂基体理想八面体结构,并对其进行紫外固化处理,通过理论计算、实验测试以及数值模拟的方式对八面体点阵结构的力学性能进行了分析.实验结果表明八面体点阵结构的压缩模量以及抗压强度随着相对密度的增加而上升,相对密度从11.3%提升至27.9%,弹性模量上升了3.5倍左右,抗压强度上升2.6倍左右.利用ABAQUS有限元软件对实验过程进行了模拟,数值模拟结果与实验结果具有良好的一致性.在理论计算中,对Deshpande等提出的八面体点阵结构计算模型(DFA模型)进行了修正,计算结果显示修正后的计算结果更接近实验值与模拟值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号