首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》1998,152(2):219-233
A concept based on the thermodynamic perturbation theory for a `simple fluid' has been applied to the attractive term of a van-der-Waals type equation of state (EOS) to derive a simple mixing rule for the a parameter. The new mixing rule is a small correction to the original one-fluid approximation to account for the influence of particles of j-type on the correlation function of ii-type in a mixture consisting of particles of i and j types. The importance of the correction has been shown by comparison of the calculated results for binary mixtures of Lennard–Jones fluids with the data obtained by numerical method (Monte-Carlo simulation). The new mixing rules can be considered as a flexible generalization of the conventional mixing rules and can be reduced to the original v-d-W mixing rules by defaulting the extra binary parameters to zero. In this way the binary parameters already available in the literature for many systems can be used without any additional regression work. Extension of the new mixing rules to a multicomponent system do not suffer from `Michelsen–Kistenmacher syndrome' and provide the correct limit for the composition dependence of second virial coefficients. Their applicability has been illustrated by various examples of vapor–liquid and liquid–liquid equilibria using a modified Patel–Teja EOS. The new mixing rules can be applied to any EOS of van-der-Waals type, i.e., EOS containing two terms which reflect the contributions of repulsive and attractive intermolecular forces.  相似文献   

2.
《Fluid Phase Equilibria》2005,227(1):97-112
New mixing rules (VWLC-I and II) capable of connecting van der Waals (VDW) to CEOS/AE mixing rule models were developed. These models are able to incorporate the same multi-component mixture parameters obtained for the van der Waals and CEOS/AE models simultaneously. The VWLC mixing rules directly incorporate local compositions into the cubic equations of state (CEOS). The energy parameters required for the local compositions are calculated from the CEOS parameters. The Peng–Robinson (PR) CEOS was used for this study. Binary interactions parameters were obtained by adjusting the vapor pressure of the binary mixture for several low and high-pressure systems. The predictive capabilities of the VWLC mixing rules were tested by vapor–liquid equilibria calculations for low and high-pressure multicomponent systems. The results were compared with the predictions of the VDW mixing rule and a Huron–Vidal (HV) kind of CEOS/AE-NRTL mixing rule. The VWLC mixing rules are consistent models giving good results in a broad range of pressures and temperatures in binary and multicomponent mixtures. They compare favorably with the CEOS/AE-NRTL mixing rule for low-pressure systems. In high-pressure ternary systems VWLC-I and II give good predictions, much better, in fact, than the CEOS/AE-NRTL mixing rule.  相似文献   

3.
《Fluid Phase Equilibria》2006,245(2):109-116
The density of nine binary and two ternary liquid mixtures at different temperatures, pressures, and compositions has been calculated using a new equation of state considering mean geometry approximation “MGA”. Although the studied mixtures cover the vast variety of mixtures including the inert gases, polar, nonpolar, refrigerant, and strongly hydrogen-bonded systems, the results in prediction of density show good agreement with experiment. The excellent results have been obtained whenever the size and the strength of intermolecular forces of components in a mixture are very similar. Our results show that the effect of size is more important than that of the strength of intermolecular forces. Since the strength of hydrogen bonding in the system of water/methanol is very high, the agreement of calculated densities with the corresponding experimental values is interesting for which the average absolute deviations are better than 1%. To show the ability of this equation of state in prediction of density, the calculated densities of some liquid mixtures have been compared with those of computed from other equations of state.  相似文献   

4.
A new approach has been developed for calculating the properties of mixtures based on an equation of state explicit in reduced Helmholtz energy. This approach allows for the representation of the thermodynamic properties over a wide range of fluid states and is based on highly accurate equations of state for the pure components combined at the reduced temperature and density of the mixture. The reducing parameters used for temperature and density depend on composition. For simple mixtures (those that closely follow Raoult's law), a very accurate representation of all thermodynamic properties has been achieved with relatively simple functions. For nonideal mixtures, the reducing functions for density and temperature were modified, and a departure function was added to the equation of state. Generally, the model is able to represent liquid and vapor states with uncertainties of 0.1% in density, 1% in heat capacities and 1% in bubble point pressures if experimental data of comparable uncertainties exist. Two applications of the mixture model concepts were developed independently by the authors in the United States and Germany over the same time period. These applications include the development of individual equations for each binary system and a generalization of the model which is valid for a wide variety of mixtures. The individual approaches are presented with an explanation of the similarities and differences. Although the paper focuses mainly on binary systems, some results for ternary mixtures are also presented.  相似文献   

5.
A local-composition, two-fluid model has been developed for equation-of-state calculations of fluid-phase equilibria for asymmetric mixtures; it is applicable to any equation of state of the van der Waals form. A modification of the quasichemical theory of Guggenheim is applied to mixtures at all fluid densities. Desirable boundary conditions are met at low densities, at high densities, and at high temperatures.In effect, the local-composition model uses density-dependent mixing rules. It contains no new adjustable binary parameters and can be extended to multicomponent mixtures without ternary (or higher) parameters. It appears that, when compared to conventional one-fluid models, significant improvement may be obtained in predictions for vapor-liquid equilibria of typical asymmetric mixtures.  相似文献   

6.
《Fluid Phase Equilibria》1986,31(3):253-272
Integral equation theory is used to determine the variations of the local mole fractions in binary mixtures of molecules differing considerably in size and energy of interaction. We model two types of mixtures, i.e., molecules interacting with the Lennard—Jones potential and molecules with the Kihara potential. The size ratio ranges from σBBAA = 1.0 to 1.75 and energy ratio for ϵBBAA = 1.21 to 9.14. Results are compared with simulation data of Hoheisel and Kohler and Nakanishi et al. Findings indicate that the coordination numbers and nearest neighbor numbers are strong functions of size ratio, but depend only weakly on energy disparity. In a mixture, large differences in size promote ‘mixing’ while large differences in energy induce ‘demixing’ of the components. It is found that the packing of nearest neighbors depends, to a large extent, on available ‘local surfaces’. the Seaton—Glandt ‘solid angle’ fractions turn out to be good correlators in nearest neighbor statistics. All local quantities are variable with changes in temperature, density and composition. The assumption of constant Wilson parameters is not valid for the systems studied.  相似文献   

7.
The excess molar volume V E data of the binary liquid systems were correlated by the Peng–Robinson–Stryjek–Vera equation of state coupled with two different types of mixing rules: composition dependent van der Waals mixing rule (vdW) and the mixing rule based on the Gupta–Rasmussen–Fredenslund method (GRF), with the NRTL equation as G E model. The results obtained by these models show that type of applied mixing rule, a number and position of interaction parameters are of great importance for a satisfactory correlation of V E data. The GRF mixing rules coupled with the NRTL model gave mostly satisfactory results for V E correlation of the nonideal binary systems of diverse complexity.  相似文献   

8.
The main objective of the study is the accurate modeling of the bubble pressure and of the vapor phase concentration in associating hydrocarbon + alcohol mixtures and the correct comparison with results from the literature. A relatively simple equation of state is used and comparison is done considering various factors that affect the accuracy of the results, so fair and correct conclusions can be drawn. The mathematical complexity of the model, the type and amount of basic properties and the number of adjustable parameters used by the model, among other factors are discussed. The Peng-Robinson equation of state including the Wong-Sandler mixing rules was used. This combination of equations of state and mixing rules have not yet been applied in a systematic way to alcohol + hydrocarbon mixtures at low and moderate pressure, as done in this work, although other complex equation of state models have been used for some selected systems. It is concluded that simple and well-founded models can correlate equilibrium data in these complex mixtures with similar accuracy than other more sophisticated models.  相似文献   

9.
10.
Using a molecular perturbation theory based on an equation of state for pure argon, excess properties and vapor-liquid equilibria are predicted for various binary mixtures composed of weakly nonspherical molecules. The results are rather satisfactory and generally much better than obtained using typical empirical methods. It is further demonstrated that a binary parameter in the dispersion energy results in only modest improvement  相似文献   

11.
《Fluid Phase Equilibria》2006,248(2):115-122
We have discussed the capability of the soft-SAFT equation of state (EoS) to predict second order thermodynamic derivative properties of pure fluids in a recent paper [F. Llovell, L.F. Vega, J. Phys. Chem. B 110 (2006) 11427–11437]. The goal of this work is to extend these calculations to selected binary mixtures. The equation was applied in a semi-predictive manner: the pure component molecular parameters needed to apply soft-SAFT to experimental systems were obtained by fitting vapor–liquid equilibrium data and used, without further fitting, to calculate isochoric and isobaric heat capacities of selected alkane + n-alkane and n-alkane + 1-alkanol binary mixtures; isentropic compressibility coefficients and the speed of sound of selected n-alkane + 1-alkanol mixtures were calculated following the same procedure. We have used the crossover soft-SAFT equation which explicitly incorporates a renormalization group term in order to take into account the long range fluctuations appearing in the near critical region. Soft-SAFT was able to capture the qualitative behavior of the mixture properties studied, for a wide range of conditions, showing quantitative agreement with experimental data in some of the cases. As a further test to the equation, we have also calculated excess properties. The equation was able to capture the non-ideal behavior upon mixing experienced by these properties. This work shows the robustness of the molecular parameters and the equation to calculate properties not included in the fitting procedure, in a predictive manner.  相似文献   

12.
Huron, M.-J. and Vidal, J., 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 3: 255-271.Good correlations of vapour-liquid equilibria can be achieved by applying the same two-parameter cubic equation of state to both phases. The results primarily depend on the method used for calculating parameters and, for mixtures, on the mixing rule. True parameters are the covolume b and the energy parameter a/b. For this latter one, deviations from a linear weighting rule are closely connected to the excess free energy at infinite pressure. Thus any mixing rule gives a model for the excess free energy, or any accepted models for this property can be used as mixing rules.From the above, an empirical polynomial mixing rule is used for data smoothing and evaluation, while for practical work a local composition model is used. The mixing rule thus obtained can be reduced to the classical quadratic rule for some easily predicted values of the interaction energies. For highly polar systems, it includes three adjustable parameters. Using literature data, the new mixing rule is applied, in the low and high pressure range, to binary mixtures with one or two polar compounds, giving good data correlation and sometimes avoiding false liquid-liquid immiscibility.  相似文献   

13.
A new procedure for obtaining density-dependent mixing rules is applied to the Soave-Redlich-Kwong equation of state. The result is a one-parameter local-composition mixing rule which adequately represents the nonidealities possible in dense fluid mixtures but approaches the classical mixing rule at low densities. A three-parameter version of the mixing rule is also presented which allows for the local-composition effect in the low density limit. The expressions are tested with the Soave-Redlich-Kwong equation of state. Results for vapor-liquid and gas-liquid systems are discussed.  相似文献   

14.
The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.  相似文献   

15.
《Fluid Phase Equilibria》2006,242(1):19-28
In this work, a new two-parameter cubic equation of state is presented based on perturbation theory for predicting phase behavior of pure compounds and of hydrocarbons and non-hydrocarbons. The parameters of the new cubic equation of state are obtained as functions of reduced temperature and acentric factor. The average deviations of the predicted vapor pressure, liquid density and vapor volume for 40 pure compounds are 1.116, 5.696 and 3.083%, respectively. Also the enthalpy and entropy of vaporization are calculated by using the new equation of state. The average deviations of the predicted enthalpy and entropy of vaporization are 2.393 and 2.358%, respectively. The capability of the proposed equation of state for predicting some other thermodynamic properties such as compressibility, second virial coefficient, sound velocity in gases and heat capacity of gases are given, too. The comparisons between the experimental data and the results of the new equation of state show the accuracy of the proposed equation with respect to commonly used equations of state, i.e. PR and SRK. The zeno line has been calculated using the new equation of state and the obtained result compared with quantities in the literatures. Bubble pressure and mole fraction of vapor for 16 binary mixtures are calculated. Averages deviations for bubble pressure and mole fraction of vapor are 9.380 and 2.735%, respectively.  相似文献   

16.
Chung, T.H., Khan, M.M., Lee, L.L. and Starling, K.E., 1984. A new equation of state for polar and nonpolar pure fluids. Fluid Phase Equilibria, 17: 351–372A new equation of state based on the concept of perturbation theory and the hard-convex-body equation of state has been developed successfully for nonpolar compounds. The equation can predict the thermodynamic properties (density, enthalpy departure and vapor pressure) of a wide range of pure fluids from small, spherical (argon-like) molecules to large, structurally complex molecules. For nonpolar compounds, the equation employs three parameters: the shape, size and energy parameters. For normal paraffins, the size parameter (hard-core volume) is related to the measurable van der Waals volume given by Bondi. For most other compounds, it is related to the critical volume. The shape-parameter values reflect the structure and degree of acentricity of the compound of interest. The equation has been extended to polar and associating compounds by using the mean-potential model. For polar compounds, a fourth parameter is required. The equation has been tested extensively for polar (dipolar and quadrupolar) and hydrogen-bonding compounds. The applicability of this equation for such a wide variety of substances provides an important first step in the development of a composition-dependent equation of state for mixtures.  相似文献   

17.
We have developed a nonlinear viscoelastic constitutive equation, which can predict the yield behavior of polymers. This constitutive equation results from the viewpoints that the plastic flow of glassy polymers can be described by a soliton, which is expected to unify the existing concepts for viscoelasticity and yield of glassy polymers, such as dislocation, disclination and free volume. Although our approach is based on molecular concepts and irreversible thermodynamics, it is phenomenological.  相似文献   

18.
This work proposes a new equation of state (EOS) based on molecular theory for the prediction of thermodynamic properties of real fluids. The new EOS uses a novel repulsive term, which gives the correct hard sphere close packed limit and yields accurate values for hard sphere and hard chain virial coefficients. The pressure obtained from this repulsive term is corrected by a combination of van der Waals and Dieterici potentials. No empirical temperature functionality of the parameters has been introduced at this stage. The novel EOS predicts the experimental volumetric data of different compounds and their mixtures better than the successful EOS of Peng and Robinson. The prediction of vapor pressures is only slightly less accurate than the results obtained with the Peng-Robinson equation that is designed for these purposes. The theoretically based parameters of the new EOS make its predictions more reliable than those obtained from purely empirical forms.  相似文献   

19.
In the present work, the group contribution with association equation of state (GCA-EoS) is extended to represent phase equilibria in mixtures containing acids, esters, and ketones, with water, alcohols, and any number of inert components. Association effects are represented by a group-contribution approach. Self- and cross-association between the associating groups present in these mixtures are considered. The GCA-EoS model is compared to the group-contribution method MHV2, which does not take into account explicitly association effects. The results obtained with the GCA-EoS model are, in general, more accurate when compared to the ones achieved by the MHV2 equation with less number of parameters. Model predictions are presented for binary self- and cross-associating mixtures.  相似文献   

20.
In this study, based on the compressibility effect of gas molecules, a new three-parameter cubic equation of state (EOS) is derived. To validate this EOS, density predictions of methane, ethane, carbon dioxide and oxygen have been studied using the new EOS at the temperature of 373 K and at the pressures up to 100 MPa. The results show a good agreement with reference data and this suggests that the proposed EOS would help to improve the study of thermodynamic properties for real gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号