首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Locating transshipment facilities and allocating origins and destinations to transshipment facilities are important decisions for many distribution and logistic systems. Models that treat demand as a continuous density over the service region often assume certain facility locations or a certain allocation of demand. It may be assumed that facility locations lie on a rectangular grid or that demand is allocated to the nearest facility or allocated such that each facility serves an equal amount of demand. These assumptions result in suboptimal distribution systems. This paper compares the transportation cost for suboptimal location and allocation schemes to the optimal cost to determine if suboptimal location and allocation schemes can produce nearly optimal transportation costs. Analytical results for distribution to a continuous demand show that nearly optimal costs can be achieved with suboptimal locations. An example of distribution to discrete demand points indicates the difficulties in applying these results to discrete demand problems.  相似文献   

2.
The capacitated maximal covering location problem with backup service   总被引:1,自引:0,他引:1  
The maximal covering location problem has been shown to be a useful tool in siting emergency services. In this paper we expand the model along two dimensions — workload capacities on facilities and the allocation of multiple levels of backup or prioritized service for all demand points. In emergency service facility location decisions such as ambulance sitting, when all of a facility's resources are needed to meet each call for service and the demand cannot be queued, the need for a backup unit may be required. This need is especially significant in areas of high demand. These areas also will often result in excessive workload for some facilities. Effective siting decisions, therefore, must address both the need for a backup response facility for each demand point and a reasonable limit on each facility's workload. In this paper, we develop a model which captures these concerns as well as present an efficient solution procedure using Lagrangian relaxation. Results of extensive computational experiments are presented to demonstrate the viability of the approach.  相似文献   

3.
In most long-range planning problems accurate forecasting of demand growth is often difficult. Sometimes unexpected shocks in the economy occur and disrupt the predicted growth rate of demand. For example, growth can unexpectedly cease for and indeterminate length of time due to crucial occurrnces such as wars, economic recessions or oil price shocks.In this paper, we examine the effects of unforeseen demand plateaus on the capacity expansion problem of sizing and timing production facilities. We assume that demand for capacity follows a stochastic process. That is, we allow for plateaus to happen at random future times and to continue for an uncertain duration. When the demand process is generated by an alternating renewal process, we show that demand plateaus result in a modified discounting rate and a modified import cost.  相似文献   

4.
We consider a supply chain setting where multiple uncapacitated facilities serve a set of customers with a single product. The majority of literature on such problems requires assigning all of any given customer??s demand to a single facility. While this single-sourcing strategy is optimal under linear (or concave) cost structures, it will often be suboptimal under the nonlinear costs that arise in the presence of safety stock costs. Our primary goal is to characterize the incremental costs that result from a single-sourcing strategy. We propose a general model that uses a cardinality constraint on the number of supply facilities that may serve a customer. The result is a complex mixed-integer nonlinear programming problem. We provide a generalized Benders decomposition algorithm for the case in which a customer??s demand may be split among an arbitrary number of supply facilities. The Benders subproblem takes the form of an uncapacitated, nonlinear transportation problem, a relevant and interesting problem in its own right. We provide analysis and insight on this subproblem, which allows us to devise a hybrid algorithm based on an outer approximation of this subproblem to accelerate the generalized Benders decomposition algorithm. We also provide computational results for the general model that permit characterizing the costs that arise from a single-sourcing strategy.  相似文献   

5.
We are concerned with a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at predetermined candidate sites. We employ Huff’s gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find the optimal solution of this model, we convert it into an equivalent one-level mixed-integer nonlinear program so that it can be solved by global optimization methods. Apart from reporting computational results obtained on a set of randomly generated instances, we also compute the benefit the leader firm derives from anticipating the competitor’s reaction of adjusting the attractiveness levels of its facilities. The results on the test instances indicate that the benefit is 58.33% on the average.  相似文献   

6.
Although supply chain scholars very often assume the availability of error free data pertaining to the flow of goods that come in and go out of an inventory system as well as the on hand inventory level, some recent investigations show that this may not be true even in facilities where advanced item identification and data capture technologies such as the barcode system are used. This paper proposes a single period model where the inventory data capture process using the barcode system is prone to errors that lead to inaccuracies. In the first part of our work, we derive analytically the optimal policy in presence of errors when both demand and errors are uniformly distributed. In the second part, we examine quantitatively the impact of record inaccuracies on the performance of an inventory system, in terms of additional overage and shortage costs incurred.  相似文献   

7.
We consider the discrete version of the competitive facility location problem in which new facilities have to be located by a new market entrant firm to compete against already existing facilities that may belong to one or more competitors. The demand is assumed to be aggregated at certain points in the plane and the new facilities can be located at predetermined candidate sites. We employ Huff's gravity-based rule in modelling the behaviour of the customers where the probability that customers at a demand point patronize a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. The objective of the firm is to determine the locations of the new facilities and their attractiveness levels so as to maximize the profit, which is calculated as the revenue from the customers less the fixed cost of opening the facilities and variable cost of setting their attractiveness levels. We formulate a mixed-integer nonlinear programming model for this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method with Lagrangean relaxation, and another branch-and-bound method with nonlinear programming relaxation. Computational results obtained on a set of randomly generated instances show that the last method outperforms the others in terms of accuracy and efficiency and can provide an optimal solution in a reasonable amount of time.  相似文献   

8.
The paper provides a framework that enables us to analyze the important topic of capital accumulation under technological progress. We describe an algorithm to solve Impulse Control problems, based on a (multipoint) boundary value problem approach. Investment takes place in lumps and we determine the optimal timing of technology adoptions as well as the size of the corresponding investments. Our numerical approach led to some guidelines for new technology investments. First, we find that investments are larger and occur in a later stadium when more of the old capital stock needs to be scrapped. Moreover, we obtain that the size of the firm’s investments increase when the technology produces more profitable products. We see that the firm in the beginning of the planning period adopts new technologies faster as time proceeds, but later on the opposite happens. Furthermore, we find that the firm does not invest such that marginal profit is zero, but instead marginal profit is negative.  相似文献   

9.
Facility location decisions are a critical element in strategic planning for a wide range of private and public firms. The ramifications of siting facilities are broadly based and long-lasting, impacting numerous operational and logistical decisions. High costs associated with property acquisition and facility construction make facility location or relocation projects long-term investments. To make such undertakings profitable, firms plan for new facilities to remain in place and in operation for an extended time period. Thus, decision makers must select sites that will not simply perform well according to the current system state, but that will continue to be profitable for the facility's lifetime, even as environmental factors change, populations shift, and market trends evolve. Finding robust facility locations is thus a difficult task, demanding that decision makers account for uncertain future events. The complexity of this problem has limited much of the facility location literature to simplified static and deterministic models. Although a few researchers initiated the study of stochastic and dynamic aspects of facility location many years ago, most of the research dedicated to these issues has been published in recent years. In this review, we report on literature which explicitly addresses the strategic nature of facility location problems by considering either stochastic or dynamic problem characteristics. Dynamic formulations focus on the difficult timing issues involved in locating a facility (or facilities) over an extended horizon. Stochastic formulations attempt to capture the uncertainty in problem input parameters such as forecast demand or distance values. The stochastic literature is divided into two classes: that which explicitly considers the probability distribution of uncertain parameters, and that which captures uncertainty through scenario planning. A wide range of model formulations and solution approaches are discussed, with applications ranging across numerous industries.  相似文献   

10.
How should firms price new products when they do not know the timing, nor the nature of the next competitive entry? To guide managers’ pricing decisions in such contexts, we propose a dynamic pricing model with two types of randomly timed entry, i.e. imitative and innovative. The characterization of the equilibrium strategies reveals how optimal prices vary with the manager’s knowledge about the timing of future competitive entries. We show that price skimming is not always optimal when entry dates are unknown to managers. Everything else equal, we demonstrate that the randomness of competitive entries make forward looking managers to choose constant prices, even though the characteristics of the market would have justified skimming the demand in the normal course. Moreover, we show that the constant pricing policy remains optimal even when the incumbent’s optimal pricing strategy influences the probability of facing a competitive entry. Finally, we find that uncertainty does not necessarily hurt firms’ profits.  相似文献   

11.
The paper aims to solve a problem faced by a company competing in the snacks market in Turkey. In line with the growth in this market, the company needs to make important decisions over the next few years about the timing and location of a new plant, its initial capacity, the timing and amount of additional capacity to be installed at the new and existing plants, the assignment of demand points to plants and the amount of raw materials to be shipped from suppliers to the plants in each period. The objective is to minimize the total cost of various components. The problem is formulated as a multi-period supply chain network design model with multi products. The resulting mixed-integer linear programming model is solved by the commercial solver CPLEX. This model enables us to carry out all analyses requested by the company in an efficient way. After this deterministic model is solved on the basis of a 9% annual increase in demand, it is extended to a minimax regret model to deal with uncertainty in demand quantities. The results suggest that opening the new plant in the city of İzmir is indeed a robust solution that is unaffected in different scenarios that are based on three distinct demand increase rates. Even though the location of the new plant remains unchanged with respect to scenarios, the optimal robust solution differs from the optimal solution of each scenario in terms of the capacity expansion decisions. After all obtained results had been communicated to the company managers and executives, the new plant construction was started in 2016 very close to the city that the mathematical model had determined. The new plant is expected to start operating in 2018.  相似文献   

12.
This paper provides a comparative analysis of five possible production strategies for two kinds of flexibility investment, namely flexible technology and flexible capacity, under demand fluctuations. Each strategy is underpinned by a set of operations decisions on technology level, capacity amount, production quantity, and pricing. By evaluating each strategy, we show how market uncertainty, production cost structure, operations timing, and investment costing environment affect a firm’s strategic decisions. The results show that there is no sequential effect of the two flexibility investments. We also illustrate the different ways in which flexible technology and flexible capacity affect a firm’s profit under demand fluctuations. The results reveal that compared to no flexibility investment, flexible technology investment earns the same or a higher profit for a firm, whereas flexible capacity investment can be beneficial or harmful to a firm’s profit. Moreover, we prove that higher flexibility does not guarantee more profit. Depending on the situation, the optimal strategy can be any one of the five possible strategies. We also provide the optimality conditions for each strategy.  相似文献   

13.
On the basis of a dynamic and non-cooperative game-theoretic model, the optimal timings of investments in new manufacturing technologies (NMT) is analysed under duopolistic competition. Non-identical incumbents with time-proportional demand always wait for some delay to invest in NMT. The existence of silent timing equilibrium is addressed subsequently. We show that cost-reducing NMT diffuse over time within a duopoly. The investments in strategic NMT, however, may be distributed through time or in a “swarm”. Economic interpretations of initial options and the comparative statics presented in this paper help decision makers develop strategies and make decisions under the situation they face. Finally, a computational algorithm of optimal timings could verify this analysis and facilitate the real applications of game-theoretic models.  相似文献   

14.
In this paper, we consider the problem of making simultaneous decisions on the location, service rate (capacity) and the price of providing service for facilities on a network. We assume that the demand for service from each node of the network follows a Poisson process. The demand is assumed to depend on both price and distance. All facilities are assumed to charge the same price and customers wishing to obtain service choose a facility according to a Multinomial Logit function. Upon arrival to a facility, customers may join the system after observing the number of people in the queue. Service time at each facility is assumed to be exponentially distributed. We first present several structural results. Then, we propose an algorithm to obtain the optimal service rate and an approximate optimal price at each facility. We also develop a heuristic algorithm to find the locations of the facilities based on the tabu search method. We demonstrate the efficiency of the algorithms numerically.  相似文献   

15.
Transportation infrastructure, such as pavements and bridges, is critical to a nation’s economy. However, a large number of transportation infrastructure is underperforming and structurally deficient and must be repaired or reconstructed. Maintenance of deteriorating transportation infrastructure often requires multiple types/levels of actions with complex effects. Maintenance management becomes more intriguing when considering facilities at the network level, which represents more challenges on modeling interdependencies among various facilities. This research considers an integrated budget allocation and preventive maintenance optimization problem for multi-facility deteriorating transportation infrastructure systems. We first develop a general integer programming formulation for this problem. In order to solve large-scale problems, we reformulate the problem and decompose it into multiple Markov decision process models. A priority-based two-stage method is developed to find optimal maintenance decisions. Computational studies are conducted to evaluate the performance of the proposed algorithms. Our results show that the proposed algorithms are efficient and effective in finding satisfactory maintenance decisions for multi-facility systems. We also investigate the properties of the optimal maintenance decisions and make several important observations, which provide helpful decision guidance for real-world problems.  相似文献   

16.
In a sustained development scenario, it is often the case that an investment is to be made over time in facilities that generate benefits. The benefits result from joint synergies between the facilities expressed as positive utilities specific to some subsets of facilities. As incremental budgets to finance fixed facility costs become available over time, additional facilities can be opened. The question is which facilities should be opened in order to guarantee that the overall benefit return over time is on the highest possible trajectory. This problem is common in situations such as ramping up a communication or transportation network where the facilities are hubs or service stations, or when introducing new technologies such as alternative fuels for cars and the facilities are fueling stations, or when expanding the production capacity with new machines, or when facilities are functions in a developing organization that is forced to make choices of where to invest limited funding.  相似文献   

17.
18.
A new mathematical model is considered related to competitive location problems where two competing parties, the Leader and the Follower, successively open their facilities and try to win customers. In the model, we consider a situation of several alternative demand scenarios which differ by the composition of customers and their preferences.We assume that the costs of opening a facility depend on its capacity; therefore, the Leader, making decisions on the placement of facilities, must determine their capacities taking into account all possible demand scenarios and the response of the Follower. For the bilevel model suggested, a problem of finding an optimistic optimal solution is formulated. We show that this problem can be represented as a problem of maximizing a pseudo- Boolean function with the number of variables equal to the number of possible locations of the Leader’s facilities.We propose a novel systemof estimating the subsets that allows us to supplement the estimating problems, used to calculate the upper bounds for the constructed pseudo-Boolean function, with additional constraints which improve the upper bounds.  相似文献   

19.
In this paper we consider the problem of designing parking facilities for park'n ride trips. We present a new continuous equilibrium network design problem to decide the capacity and fare of these parking lots at a tactical level. We assume that the parking facilities have already been located and other topological decisions have already been taken.The modeling approach proposed is mathematical programming with equilibrium constraints. In the outer optimization problem, a central Authority evaluates the performance of the transport network for each network design decision. In the inner problem a multimodal traffic assignment with combined modes, formulated as a variational inequality problem, generates the share demand for modes of transportation, and for parking facilities as a function of the design variables of the parking lots. The objective is to make optimal parking investment and pricing decisions in order to minimize the total travel cost in a subnetwork of the multimodal transportation system.We present a new development in model formulation based on the use of generalized parking link cost as a design variable.The bilevel model is solved by a simulated annealing algorithm applied to the continuous and non-negative design decision variables. Numerical tests are reported in order to illustrate the use of the model, and the ability of the approach to solve applications of moderate size.  相似文献   

20.
We develop a spatial interaction model that seeks to simultaneously optimize location and design decisions for a set of new facilities. The facilities compete for customer demand with pre-existing competitive facilities and with each other. The customer demand is assumed to be elastic, expanding as the utility of the service offered by the facilities increases. Increases in the utility can be achieved by increasing the number of facilities, design improvements, or locating facilities closer to the customer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号