首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new population-based hybrid meta-heuristic for the periodic vehicle routing problem with time windows. This meta-heuristic is a generational genetic algorithm that uses two neighborhood-based meta-heuristics to optimize offspring. Local search methods have previously been proposed to enhance the fitness of offspring generated by crossover operators. In the proposed method, neighborhood-based meta-heuristics are used for their capacity to escape local optima, and deliver optimized and diversified solutions to the population of the next generation. Furthermore, the search performed by the neighborhood-based meta-heuristics repairs most of the constraint violations that naturally occur after the application of the crossover operators. The genetic algorithm we propose introduces two new crossover operators addressing the periodic vehicle routing problem with time windows. The two crossover operators are seeking the diversification of the exploration in the solution space from solution recombination, while simultaneously aiming not to destroy information about routes in the population as computing routes is NP-hard. Extensive numerical experiments and comparisons with all methods proposed in the literature show that the proposed methodology is highly competitive, providing new best solutions for a number of large instances.  相似文献   

2.
This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.   相似文献   

3.
This paper considers a vehicle routing problem where each vehicle performs delivery operations over multiple routes during its workday and where new customer requests occur dynamically. The proposed methodology for addressing the problem is based on an adaptive large neighborhood search heuristic, previously developed for the static version of the problem. In the dynamic case, multiple possible scenarios for the occurrence of future requests are considered to decide about the opportunity to include a new request into the current solution. It is worth noting that the real-time decision is about the acceptance of the new request, not about its service which can only take place in some future routes (a delivery route being closed as soon as a vehicle departs from the depot). In the computational results, a comparison is provided with a myopic approach which does not consider scenarios of future requests.  相似文献   

4.
We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported.  相似文献   

5.
In this paper we formulate an integer programming model for the Location and Routing Problem with Pickup and Delivery. We propose a column generation scheme and implement, for the subproblem, a label-setting algorithm for the shortest path with pickup and delivery and time windows problem. We also propose a set of heuristics to speed up this process. To validate the model, we implement the column generation scheme and test it on different instances developed in this paper. We also provide an analysis of how the costs of opening depots and the fixed cost of routes affect the optimal solution.  相似文献   

6.
The problem of routing and wavelength assignment in all-optical networks may be solved by a combined approach involving the computation of alternative routes for the lightpaths, followed by the solution of a partition colouring problem in a conflict graph. A new tabu search heuristic is also proposed for the partition colouring problem, which may be viewed as an extension of the graph colouring problem. Computational experiments are reported, showing that the tabu search heuristic outperforms the best heuristic for partition colouring by approximately 20% in the average and illustrating that the new approach for the problem of routing and wavelength assignment is more robust than a well established heuristic for this problem.  相似文献   

7.
《Optimization》2012,61(4):383-403
Lexicographic versions of the cost minimizing transportation problem (CMTP) and the time minimizing transportation problem (TMTP) are presented in this paper. In addition to minimizing the quantity sent on the costliest routes in a cost minimizing transportation problem. an attempt is made to minimize the quantity transported on the second-costliest routes. if the shipment on the costliest routes is as small as possible and the quantity shipped on the third-costliest routes, if the shipments on the costliest and the second- costliest routes are as small as possible. and so on. In a lexicographic time minimizing transportation problem one is not only interested in minimizing the transportation cost on the routes of the longest duration but also on the routes of second longest, third-longest duration and so on. For finding lexicographic optimal solutions (LOS) of lexicographic cost minimizing and time minimizing transportation problems a standard cost minimizing transportation problem is formulated whose optimal solution is shown to provide the answer. Some extensions are also discussed  相似文献   

8.
The vehicle fleet mix problem is a special case of the vehicle routing problem where customers are served by a heterogeneous fleet of vehicles with various capacities. An efficient heuristic for determining the composition of a vehicle fleet and travelling routes was developed using tabu search and by solving set partitioning problems. Two kinds of problems have appeared in the literature, concerning fixed cost and variable cost, and these were tested for evaluation. Initial solutions were found using the modified sweeping method. Whenever a new solution in an iteration of the tabu search was obtained, optimal vehicle allocation was performed for the set of routes, which are constructed from the current solution by making a giant tour. Experiments were performed for the benchmark problems that appeared in the literature and new best-known solutions were found.  相似文献   

9.
This article presents a new method for determining optimal transit routes. The Transit Route Arc-Node Service Maximization model is a mathematical model that maximizes the service value of a route, rather than minimizing cost. Cost (distance) is considered as a budget constraint on the extent of the route. The mathematical formulation modifies and exploits the structure of linear programming problems designed for the traveling salesman problem. An innovative divide-and-conquer solution procedure is presented that not only makes the transit routing problem tractable, but also provides a range of high-quality alternate routes for consideration, some of which have substantially varying geometries. Variant formulations are provided for several common transit route types. The model is tested through its application to an existing street network in Richardson, TX. Optimal numeric results are obtained for several problem instances, and these results demonstrate that increased route cost is not correlated with increased service provision.  相似文献   

10.
The arc routing problem involves the total distance covered in traversing a certain number of arcs in a network. In the capacitated version of this problem of a finite capacity is associated with each vehicle. In this paper we introduce a new approximate solution strategy for the capacitated arc routing problem (CARP). This strategy usesd an insertion procedure to generate many routes in parallel. The purpose is to obtain a better balance between the costs of each route. Computational results are reported.  相似文献   

11.
This paper proposes an alternate formulation of the traffic assignment problem using route flows and the shortest Origin-Destination (OD) travel times as the decision variables. This is accomplished through defining a gap function to convert the Nonlinear Complementarity Problem (NCP) formulation to an equivalent Mathematical Program (MP). This formulation has two advantages:
  • 1.(i) it can model assignment problems with general route costs which cannot be accomplished with existing formulations that use link-flow variables
  • 2.(ii) the objective function is smooth, convex, and bounded, which permits efficient MP algorithms for its solution.
Two solution approaches are developed to solve the proposed formulation. The first is based on a set of working routes, which are modeled as “known a priori” based on travelers' preferences or interviews. The second approach uses a column generation procedure to generate a new route in each iteration on a need basis. For each approach, we use a Successive Quadratic Programming (SQP) algorithm to solve for the solutions.To show that the formulation is correct, we solve a small example with a general route cost and compare it to the classic traffic equilibrium problem which assumes an additive route cost function. Finally, numerical results for a medium-sized network are provided to demonstrate the feasibility of the solution approach.  相似文献   

12.
This paper studies the problem of assigning capacities to links in a backbone communication network and determining the routes used by messages for all communicating node pairs in the network under time varying traffic conditions. The best routes are to be chosen from among all possible routes in the network. Tradeoffs between link costs and response time to users are achieved by specifying an upper limit on the average link queueing delay in the network. The goal is to minimize total link fixed and variable costs. The topology of the network and the end-to-end traffic requirements during the different busy-hours are assumed to be known. The problem is formulated as a mathematical programming model. An efficient solution procedure based on a Lagrangian relaxation of the problem is developed. The results of extensive computational experiments across a variety of networks are reported. These results indicate that the solution procedure is effective for a wide range of traffic loads and cost structures.  相似文献   

13.
In this paper we present a three-phase heuristic for the Capacitated Location-Routing Problem. In the first stage, we apply a GRASP followed by local search procedures to construct a bundle of solutions. In the second stage, an integer-linear program (ILP) is solved taking as input the different routes belonging to the solutions of the bundle, with the objective of constructing a new solution as a combination of these routes. In the third and final stage, the same ILP is iteratively solved by column generation to improve the solutions found during the first two stages. The last two stages are based on a new model, the location-reallocation model, which generalizes the capacitated facility location problem and the reallocation model by simultaneously locating facilities and reallocating customers to routes assigned to these facilities. Extensive computational experiments show that our method is competitive with the other heuristics found in the literature, yielding the tightest average gaps on several sets of instances and being able to improve the best known feasible solutions for some of them.  相似文献   

14.
Due to an increasing demand for public transportation and intra-urban mobility, an efficient organization of public transportation has gained significant importance in the last decades. In this paper we present a model formulation for the bus rapid transit route design problem, given a fixed number of routes to be offered. The problem can be tackled using a decomposition strategy, where route design and the determination of frequencies and passenger flows will be dealt with separately. We propose a hybrid metaheuristic based on a combination of Large Neighborhood Search (LNS) and Linear Programming (LP). The algorithm as such is iterative. Decision upon the design of routes will be handled using LNS. The resulting passenger flows and frequencies will be determined by solving a LP. The solution obtained may then be used to guide the exploration of new route designs in the following iterations within LNS. Several problem specific operators are suggested and have been tested. The proposed algorithm compares extremely favorable and is able to obtain high quality solutions within short computational times.  相似文献   

15.
The topic of the paper is in the field of sculptured surface machining (SSM) on multi-axis NC machines. It presents novel results of investigation of tool-path generation for sculptured surface machining on multi-axis NC machines. The purpose of the paper is to develop an integral form of solution to the problem of optimal tool-path generation. The concept of time-minimal tool-paths is introduced, as well as the optimization problem being formulated analytically. The problem of optimization is subdivided into the following three partial sub-problems: (a) the problem of local tool-path generation; (b) the problem of regional tool-path generation, and finally, (c) the problem of global tool-path generation. The paper presents a closed-form solution to the first two sub-problems. A solution to the problem of optimal tool-path generation is given in the form of an integral equation. The obtained solution enables one to retain the optimal cutter configuration (i.e., the cutter position, and the cutter orientation), as well as the optimal instant direction of feed-rate at every cutter location-point (further, CC-point).  相似文献   

16.
This paper introduces a new type of constraints, related to schedule synchronization, in the problem formulation of aircraft fleet assignment and routing problems and it proposes an optimal solution approach. This approach is based on Dantzig–Wolfe decomposition/column generation. The resulting master problem consists of flight covering constraints, as in usual applications, and of schedule synchronization constraints. The corresponding subproblem is a shortest path problem with time windows and linear costs on the time variables and it is solved by an optimal dynamic programming algorithm. This column generation procedure is embedded into a branch and bound scheme to obtain integer solutions. A dedicated branching scheme was devised in this paper where the branching decisions are imposed on the time variables. Computational experiments were conducted using weekly fleet routing and scheduling problem data coming from an European airline. The test problems are solved to optimality. A detailed result analysis highlights the advantages of this approach: an extremely short subproblem solution time and, after several improvements, a very efficient master problem solution time.  相似文献   

17.
In this paper, we introduce the stop-and-drop problem (SDRP), a new variant of location-routing problems, that is mostly applicable to nonprofit food distribution networks. In these distribution problems, there is a central warehouse that contains food items to be delivered to agencies serving the people in need. The food is delivered by trucks to multiple sites in the service area and partner agencies travel to these sites to pick up their food. The tactical decision problem in this setting involves how to jointly select a set of delivery sites, assign agencies to these sites, and schedule routes for the delivery vehicles. The problem is modeled as an integrated mixed-integer program for which we delineate a two-phase sequential solution approach. We also propose two Benders decomposition-based solution procedures, namely a linear programming relaxation based Benders implementation and a logic-based Benders decomposition heuristic. We show through a set of realistic problem instances that given a fixed time limit, these decomposition based methods perform better than both the standard branch-and-bound solution and the two-phase approach. The general problem and the realistic instances used in the computational study are motivated by interactions with food banks in southeastern United States.  相似文献   

18.
In this paper, we consider a variant of the open vehicle routing problem in which vehicles depart from the depot, visit a set of customers, and end their routes at special nodes called driver nodes. A driver node can be the home of the driver or a parking lot where the vehicle will stay overnight. The resulting problem is referred to as the open vehicle routing problem with driver nodes (OVRP-d). We consider three classes of OVRP-d: with no time constraints, with a maximum route duration, and with both a maximum route duration as well as time deadlines for visiting customers. For the solution of these problems, which are not addressed previously in the literature, we develop a new tabu search heuristic. Computational results on randomly generated instances indicate that the new heuristic exhibits a good performance both in terms of the solution quality and computation time.  相似文献   

19.
The purpose of this article is to propose a tabu search heuristic for the split delivery Vehicle Routing Problem with Production and Demand Calendars (VRPPDC). This new problem consists of determining which customers will be served by a common carrier, as well as the delivery routes for those served by the private fleet, in order to minimize the overall transportation and inventory costs. We first model this problem and then propose a simple decomposition procedure that can be used to provide a starting solution. Next, we introduce a new tabu search heuristic and we describe two new neighbor reduction strategies. Finally, we present the results of our extensive computational tests. According to these tests, our reduction strategies are efficient not only at reducing computing time but also at improving the overall solution quality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号