首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we consider a single-item inventory system where two demand classes with different service requirements are satisfied from a common inventory. A critical level, reorder point, order quantity or (s, q, k) policy is in use. The time axis is divided into discrete time units, which is a common characteristic of many real-life supply-chain processes. The inventory process within the lead time of a replenishment order is modelled as a sequence of (1) an ordinary renewal process and (2) two alternating renewal processes. Approximations are developed for the demand class-specific fill rates and the probability distribution of the waiting time of low priority customer orders. This waiting time distribution is used for the inventory allocation in a two-stage supply chain.  相似文献   

2.
In this paper we analyze two single server queueing-inventory systems in which items in the inventory have a random common life time. On realization of common life time, all customers in the system are flushed out. Subsequently the inventory reaches its maximum level S through a (positive lead time) replenishment for the next cycle which follows an exponential distribution. Through cancellation of purchases, inventory gets added until their expiry time; where cancellation time follows exponential distribution. Customers arrive according to a Poisson process and service time is exponentially distributed. On arrival if a customer finds the server busy, then he joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in a finite waiting room of capacity K. Finding that at full, he joins a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on ‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service completion epoch the waiting room size drops to preassigned number L ? 1 (1 < L < K) or below, a customer is transferred from pool to waiting room with probability p (0 < p < 1) and positioned as the last among the waiting customers. If at a departure epoch the waiting room turns out to be empty and there is at least one customer in the pool, then the one ahead of all waiting in the pool gets transferred to the waiting room with probability one. We introduce a totally different transfer mechanism in Model 2: when at a service completion epoch, the server turns idle with at least one item in the inventory, the pooled customer is immediately taken for service. At the time of a cancellation if the server is idle with none, one or more customers in the waiting room, then the head of the pooled customer go to the buffer directly for service. Also we assume that no customer joins the system when there is no item in the inventory. Several system performance measures are obtained. A cost function is discussed for each model and some numerical illustrations are presented. Finally a comparison of the two models are made.  相似文献   

3.
The analysis of optimal inventory replenishment policies for items having lumpy demand patterns is difficult, and has not been studied extensively although these items constitute an appreciable portion of inventory populations in parts and supplies types of stockholdings. This paper studies the control of an inventory item when the demand is lumpy. A continuous review (s,S) policy with a maximum issue quantity restriction and with the possibility of opportunistic replenishment is proposed to avoid the stock of these items being depleted unduly when all the customer orders are satisfied from the available inventory and to reduce ordering cost by coordinating inventory replenishments. The nature of the customer demands is approximated by a compound Poisson distribution. When a customer order arrives, if the order size is greater than the maximum issue quantity w, the order is satisfied by placing a special replenishment order rather than from the available stock directly. In addition, if the current inventory position is equal to or below a critical level A when such an order arrives, an opportunistic replenishment order which combines the special replenishment order and the regular replenishment order will be placed, in order to satisfy the customer's demand and to bring the inventory position to S. In this paper, the properties of the cost function of such an inventory system with respect to the control parameters s, S and A are analysed in detail. An algorithm is developed to determine the global optimal values of the control parameters. Indeed, the incorporation of the maximum issue quantity and opportunistic replenishment into the (s,S) policy reduces the total operating cost of the inventory system.  相似文献   

4.
Abstract

This article presents a perishable stochastic inventory system under continuous review at a service facility in which the waiting hall for customers is of finite size M. The service starts only when the customer level reaches N (< M), once the server has become idle for want of customers. The maximum storage capacity is fixed as S. It is assumed that demand for the commodity is of unit size. The arrivals of customers to the service station form a Poisson process with parameter λ. The individual customer is issued a demanded item after a random service time, which is distributed as negative exponential. The items of inventory have exponential life times. It is also assumed that lead time for the reorders is distributed as exponential and is independent of the service time distribution. The demands that occur during stock out periods are lost.The joint probability distribution of the number of customers in the system and the inventory levels is obtained in steady state case. Some measures of system performance in the steady state are derived. The results are illustrated with numerical examples.  相似文献   

5.
We consider a discrete time single server queueing system in which arrivals are governed by the Markovian arrival process. During a service period, all customers are served exhaustively. The server goes on vacation as soon as he/she completes service and the system is empty. Termination of the vacation period is controlled by two threshold parameters N and T, i.e. the server terminates his/her vacation as soon as the number waiting reaches N or the waiting time of the leading customer reaches T units. The steady state probability vector is shown to be of matrix-geometric type. The average queue length and the probability that the server is on vacation (or idle) are obtained. We also derive the steady state distribution of the waiting time at arrivals and show that the vacation period distribution is of phase type.  相似文献   

6.
We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long ago as the 1960s, Kleinrock suggested a queueing discipline to ensure that the targets are achieved. He proposed that customers accumulate priority as a linear function of their time in the queue: the higher the urgency of the customer’s class, the greater the rate at which that customer accumulates priority. When the server becomes free, the customer (if any) with the highest accumulated priority at that time point is the one that is selected for service. Kleinrock called such a queue a time-dependent priority queue, but we shall refer to it as the accumulating priority queue. Recognising that the performance of many queues, particularly in the healthcare and human services sectors, is specified in terms of tails of waiting time distributions for customers of different classes, we revisit the accumulating priority queue to derive its waiting time distributions, rather than just the mean waiting times. We believe that some elements of our analysis, particularly the process that we call the maximum priority process, are of mathematical interest in their own right.  相似文献   

7.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

8.
A number of recent articles in the literature have argued the case, when lead time is variable, for splitting a replenishment order for Q between n suppliers by comparing this with the alternative of placing a single order for Q on one supplier. The split order compares favourably on the grounds that the arrival of the first component of a split order cannot be later than the arrival of an order from any one specified supplier. This note argues that an alternative comparison could be made with a policy of ordering Q/n from a single supplier (n times as often). It makes this comparison in the context of a continuous review (Q, r) inventory model but does so not by comparing aggregate costs but by fixing Q and the customer stock service level and comparing the average stock — an approach which is more appropriate to how many companies manage inventory in practice. We consider Poisson and deterministic demand processes, a general lead time distribution and both lost sales and backorder models.  相似文献   

9.
This paper presents heavy traffic limit theorems for the extreme virtual waiting time of a customer in an open queueing network. In this paper, functional limit theorems are proved for extreme values of important probability characteristics of the open queueing network investigated as the maximum and minimum of the total virtual waiting time of a customer, and the maximum and minimum of the virtual waiting time of a customer. Also, the paper presents the previous related works for extreme values in queues and the virtual waiting time in heavy traffic.  相似文献   

10.
In this paper, we study the inventory system of an online retailer with compound Poisson demand. The retailer normally replenishes its inventory according to a continuous review (nQR) policy with a constant lead time. Usually demands that cannot be satisfied immediately are backordered. We also assume that the customers will accept a reasonable waiting time after they have placed their orders because of the purchasing convenience of the online system. This means that a sufficiently short waiting time incurs no shortage costs. We call this allowed waiting time “committed service time”. After this committed service time, if the retailer is still in shortage, the customer demand must either be satisfied with an emergency supply that takes no time (which is financially equivalent to a lost sale) or continue to be backordered with a time-dependent backorder cost. The committed service time gives an online retailer a buffer period to handle excess demands. Based on real-time information concerning the outstanding orders of an online retailer and the waiting times of its customers, we provide a decision rule for emergency orders that minimizes the expected costs under the assumption that no further emergency orders will occur. This decision rule is then used repeatedly as a heuristic. Numerical examples are presented to illustrate the model, together with a discussion of the conditions under which the real-time decision rule provides considerable cost savings compared to traditional systems.  相似文献   

11.
Besides service level and mean physical stock, customer waiting time is an important performance characteristic for an inventory system. In this paper we discuss the calculation of this waiting time in case a periodic review control policy with order-up-to-levelS is used and customers arrive according to a Poisson process. For the case of Gamma distributed demand per customer, we obtain (approximate) expressions for the waiting time characteristics. The approach clearly differs from the traditional approaches. It can also be used to obtain other performance characteristics such as the mean physical stock and the service level.  相似文献   

12.
We consider the inventory control problem of an independent supplier in a continuous review system. The supplier faces demand from a single customer who in turn faces Poisson demand and follows a continuous review (R, Q) policy. If no information about the inventory levels at the customer is available, reviews and ordering are usually carried out by the supplier only at points in time when a customer demand occurs. It is common to apply an installation stock reorder point policy. However, as the demand faced by the supplier is not Markovian, this policy can be improved by allowing placement of orders at any point in time. We develop a time delay policy for the supplier, wherein the supplier waits until time t after occurrence of the customer demand to place his next order. If the next customer demand occurs before this time delay, then the supplier places an order immediately. We develop an algorithm to determine the optimal time delay policy. We then evaluate the value of information about the customer’s inventory level. Our numerical study shows that if the supplier were to use the optimal time delay policy instead of the installation stock policy then the value of the customer’s inventory information is not very significant.  相似文献   

13.
In this note we explore a useful equivalence relation for the delay distribution in the G/M/1 queue under two different service disciplines: (i) processor sharing (PS); and (ii) random order of service (ROS). We provide a direct probabilistic argument to show that the sojourn time under PS is equal (in distribution) to the waiting time under ROS of a customer arriving to a non-empty system. We thus conclude that the sojourn time distribution for PS is related to the waiting-time distribution for ROS through a simple multiplicative factor, which corresponds to the probability of a non-empty system at an arrival instant. We verify that previously derived expressions for the sojourn time distribution in the M/M/1 PS queue and the waiting-time distribution in the M/M/1 ROS queue are indeed identical, up to a multiplicative constant. The probabilistic nature of the argument enables us to extend the equivalence result to more general models, such as the M/M/1/K queue and ·/M/1 nodes in product-form networks.  相似文献   

14.
Customers arriving according to a Markovian arrival process are served at a single server facility. Waiting customers generate priority at a constant rate γγ; such a customer waits in a waiting space of capacity 1 if this waiting space is not already occupied by a priority generated customer; else it leaves the system. A customer in service will be completely served before the priority generated customer is taken for service (non-preemptive service discipline). Only one priority generated customer can wait at a time and a customer generating into priority at that time will have to leave the system in search of emergency service elsewhere. The service times of ordinary and priority generated customers follow PH-distributions. The matrix analytic method is used to compute the steady state distribution. Performance measures such as the probability of n consecutive services of priority generated customers, the probability of the same for ordinary customers, and the mean waiting time of a tagged customer are found by approximating them by their corresponding values in a truncated system. All these results are supported numerically.  相似文献   

15.
Crowdsourcing is getting popular after a number of industries such as food, consumer products, hotels, electronics, and other large retailers bought into this idea of serving customers. In this paper, we introduce a multi-server queueing model in the context of crowdsourcing. We assume that two types, say, Type 1 and Type 2, of customers arrive to a c-server queueing system. A Type 1 customer has to receive service by one of c servers while a Type 2 customer may be served by a Type 1 customer who is available to act as a server soon after getting a service or by one of c servers. We assume that a Type 1 customer will be available for serving a Type 2 customer (provided there is at least one Type 2 customer waiting in the queue at the time of the service completion of that Type 1 customer) with probability \(p, 0 \le p \le 1\). With probability \(q = 1 - p\), a Type 1 customer will opt out of serving a Type 2 customer provided there is at least one Type 2 customer waiting in the system. Upon completion of a service a free server will offer service to a Type 1 customer on an FCFS basis; however, if there are no Type 1 customers waiting in the system, the server will serve a Type 2 customer if there is one present in the queue. If a Type 1 customer decides to serve a Type 2 customer, for our analysis purposes that Type 2 customer will be removed from the system as Type 1 customer will leave the system with that Type 2 customer. Under the assumption of exponential services for both types of customers we study the model in steady state using matrix analytic methods and establish some results including explicit ones for the waiting time distributions. Some illustrative numerical examples are presented.  相似文献   

16.
We consider the M/M/s/K retrial queues in which a customer who is blocked to enter the service facility may leave the system with a probability that depends on the number of attempts of the customer to enter the service facility. Approximation formulae for the distributions of the number of customers in service facility, waiting time in the system and the number of retrials made by a customer during its waiting time are derived. Approximation results are compared with the simulation.  相似文献   

17.
In this paper we analyze a queueing system with a general service scheduling function. There are two types of customer with different service requirements. The service order for customers of each type is determined by the service scheduling function αk(ij) where αk(ij) is the probability for type-k customer to be selected when there are i type-1 and j type-2 customers. This model is motivated by traffic control to support traffic streams with different traffic characteristics in telecommunication networks (in particular, ATM networks). By using the embedded Markov chain and supplementary variable methods, we obtain the queue-length distribution as well as the loss probability and the mean waiting time for each type of customer. We also apply our model to traffic control to support diverse traffics in telecommunication networks. Finally, the performance measures of the existing diverse scheduling policies are compared. We expect to help the system designers select appropriate scheduling policy for their systems.  相似文献   

18.
In this paper we study a queueing model in which the customers arrive according to a Markovian arrival process (MAP). There is a single server who offers services on a first-come-first-served basis. With a certain probability a customer may require an optional secondary service. The secondary service is provided by the same server either immediately (if no one is waiting to receive service in the first stage) or waits until the number waiting for such services hits a pre-determined threshold. The model is studied as a QBD-process using matrix-analytic methods and some illustrative examples are discussed.  相似文献   

19.
We study an (sS) production inventory system where the processing of inventory requires a positive random amount of time. As a consequence a queue of demands is formed. Demand process is assumed to be Poisson, duration of each service and time required to add an item to the inventory when the production is on, are independent, non-identically distributed exponential random variables. We assume that no customer joins the queue when the inventory level is zero. This assumption leads to an explicit product form solution for the steady state probability vector, using a simple approach. This is despite the fact that there is a strong correlation between the lead-time (the time required to add an item into the inventory) and the number of customers waiting in the system. The technique is: combine the steady state vector of the classical M/M/1 queue and the steady state vector of a production inventory system where the service is instantaneous and no backlogs are allowed. Using a similar technique, the expected length of a production cycle is also obtained explicitly. The optimal values of S and the production switching on level s have been studied for a cost function involving the steady state system performance measures. Since we have obtained explicit expressions for the performance measures, analytic expressions have been derived for calculating the optimal values of S and s.  相似文献   

20.
In this paper, we consider a two-stage tandem network. The customers waiting in these two stages share one finite buffer. By constructing a Markov process, we derive the stationary probability distribution of the system and the sojourn time distribution. Given some constraints on the minimum loss probability and the maximum waiting time, we also derive the optimal buffer size and the shared-buffer size by minimizing the total buffer costs. Numerical results show that, by adopting the buffer-sharing policy, the customer acceptance fraction and the delivery reliability are more sensitive to buffer size comparing with the buffer-allocation policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号