首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider an inventory-production system where items deteriorate at a constant rate. The objective is to develop an optimal production policy that minimizes the cost associated with inventory and production rate. The inventory problem is first modeled as a linear optimal control problem. Then linear quadratic regulator (LQR) technique is applied to the control problem in order to determine the optimal production policy. Examples are solved for three different demand functions. Sensitivity analysis is then conducted to study the effect of changing the cost parameters on the objective function.  相似文献   

2.
In this paper, we present a robust optimization formulation for dealing with demand uncertainty in a dynamic pricing and inventory control problem for a make-to-stock manufacturing system. We consider a multi-product capacitated, dynamic setting. We introduce a demand-based fluid model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate and all coefficients are time-dependent. A key part of the model is that no backorders are allowed. We show that the robust formulation is of the same order of complexity as the nominal problem and demonstrate how to adapt the nominal (deterministic) solution algorithm to the robust problem.  相似文献   

3.
In most multi-item inventory systems, the ordering costs consist of a major cost and a minor cost for each item included. Applying for every individual item a cyclic inventory policy, where the cycle length is a multiple of some basic cycle time, reduces the major ordering costs. An efficient algorithm to determine the optimal policy of this type is discussed in this paper. It is shown that this algorithm can be used for deterministic multi-item inventory problems, with general cost rate functions and possibly service level constraints, of which the well-known joint replenishment problem is a special case. Some useful results in determining the optimal control parameters are derived, and worked out for piecewise linear cost rate functions. Numerical results for this case show that the algorithm significantly outperforms other solution methods, both in the quality of the solution and in the running time.  相似文献   

4.
The paper gives a new approach towards a two––item inventory model for deteriorating items with a linear stock––dependent demand rate. In fact, for the first time, the interacting terms showing the mutual increase in the demand of one commodity due to the presence of the other is accommodated in the model. Again, from the linear demand rate, it follows that more is the inventory, more is the demand. So a control parameter is introduced, such that it maintains the continuous supply to the inventory. Next an objective function is formed to calculate the net profit with respect to all possible profits and all possible loss (taken with negative sign). The paper obtains a necessary criterion for the steady state optimal control problem for optimizing the objective function subjected to the constraints given by the ordinary differential equations of the inventory. It also considers a particular choice of parameters satisfying the above necessary conditions. Under this choice, the optimal values of control parameters are calculated; also the optimal amount of inventories is found out. Finally, with respect to these optimal values of control parameters and those of the optimal inventories, the optimal value of the objective function is determined.Next another choice of parameters is considered for which the aforesaid necessary conditions do not hold. Obviously, in that case the steady state solution is non-optimal. In such a case a suboptimal problem is considered corresponding to the more profitable inventory. It is shown that such suboptimal steady state solution fails to exist in this case.  相似文献   

5.
This paper deals with the optimal control of a one-machine two-product manufacturing system with setup changes, operating in a continuous time dynamic environment. The system is deterministic. When production is switched from one product to the other, a known constant setup time and a setup cost are incurred. Each product has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a feedback control problem. The objective is to minimize the total backlog, inventory and setup costs incurred over a finite horizon. The optimal solution provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady state, the optimal cyclic schedule is determined. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region, the optimal control policy is determined analytically.  相似文献   

6.
This paper deals with an extended EOQ-type inventory model for a perishable product where the demand rate is a function of the on-hand inventory. The traditional parameters of unit item cost and ordering cost are kept constant; but the holding cost is treated as (i) a nonlinear function of the length of time for which the item is held in stock, and (ii) a functional form of the amount of the on-hand inventory. The approximate optimal solution in both the cases are derived. Computational results are presented indicating the effects of nonlinearity in holding costs.  相似文献   

7.
Normally, the real-world inventory control problems are imprecisely defined and human interventions are often required to solve these decision-making problems. In this paper, a realistic inventory model with imprecise demand, lead-time and inventory costs have been formulated and an inventory policy is proposed to minimize the cost using man–machine interaction. Here, demand increases with time at a decreasing rate. The imprecise parameters of lead-time, inventory costs and demand are expressed through linear/non-linear membership functions. These are represented by different types of membership functions, linear or quadratic, depending upon the prevailing supply condition and marketing environment. The imprecise parameters are first transformed into corresponding interval numbers and then following the interval mathematics, the objective function for average cost is changed into respective multi-objective functions. These functions are minimized and solved for a Pareto-optimum solution by interactive fuzzy decision-making procedure. This process leads to man–machine interaction for optimum and appropriate decision acceptable to the decision maker’s firm. The model is illustrated numerically and the results are presented in tabular forms.  相似文献   

8.
A comprehensible and unified system control approach is presented to solve a class of production/inventory smoothing problems. A nonstationary, non-Gaussian, finite-time linear optimal solution with an attractive computation scheme is obtained for a general quadratic and linear cost structure. A complete solution to a classical production/inventory control problem is given as an example. A general solution to the discrete-time optimal regulator with arbitrary but known disturbance is provided and discussed in detail. A computationally attractive closed-loop suboptimal scheme is presented for problems with constraints or nonquadratic costs. Implementation and interpretation of the results are discussed.  相似文献   

9.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

10.
为了更好地应对需求的不确定性,在需求实现之前,企业既可以生产成品直接满足需求,亦可生产部分半成品,在观察到实际需求之后短时间内迅速完成剩余生产环节以满足需求。未加工的半成品和未售出的成品可用于满足后续周期的需求。作为一种提高生产灵活性的手段,分阶段生产的方式会产生更高的成本。企业需要在成本和灵活性之间作出权衡,优化生产决策。模型通过动态规划的方法,研究需求不确定情况下考虑半成品库存的多周期生产决策问题,通过分析目标函数以及最优值函数的结构性质,推导出最优的多周期生产策略为修正的目标库存策略,并且分析了不同参数对最优策略的影响。  相似文献   

11.
A new type of replenishment policy is suggested for an inventory item having a finite shortage cost and linear trend in demand over a finite time horizon. The optimal solution of the suggested replenishment policy has a lower total cost as compared with the optimal solution for the traditional replenishment policies.  相似文献   

12.
This paper studies a deterministic inventory model with a stock-dependent demand pattern where the cumulative holding cost is a non-linear function of both time and stock level. When the monetary resources are limited and the inventory manager can invest his/her money in buying different products, it seems reasonable to select the ones that provide a higher profitability. Thus, a new approach with the aim of maximizing the profitability ratio (defined as the profit/cost quotient) is considered in this paper. We prove that the profitability ratio maximization is equivalent to minimizing the inventory cost per unit of an item. The optimal policy is obtained in a closed form, whose general expression is a generalization of the classical EOQ formula for inventory models with a stock-dependent demand rate and a non-linear holding cost. This optimal solution is different from the other policies proposed for the problems of minimum cost or maximum profit per unit time. A complete sensitivity analysis of the optimal solution with respect to all the parameters of the model is developed. Finally, numerical examples are solved to illustrate the theoretical results and the solution methodology.  相似文献   

13.
In this paper, the economic production quantity problem for a single-product single-machine system is extended. It is assumed that annual demand of the product is a function of price set by manufacturer. This extension considers sales revenue, inventory and setup costs as well as a variable cost of production which is a function of the lot size. Several linear and non-linear functions of demand and variable cost are considered in this paper and a global solution methodology is presented for the models developed. Newton??s method is used to find local optima and asymptotic convergence of the solution algorithm to a global optimum is proved. Numerical studies followed by a discussion provide additional insights into the problem.  相似文献   

14.
企业为下游买方提供赊销,由于大量的资金被应收账款占用,企业可能因资金不足而无法生产足够的产品。企业可以通过保理(出售应收账款)进行融资,减小需求损失。在离散时间多周期的确定需求下,使用决策变量描述各周期的系统状态及其状态转移方程,将此问题建模为线性规划。通过分析此问题的结构特点,再提出了一种新颖且等价的建模方法,可以有效减少决策变量和约束条件的数量。在连续时间模型和混合模型中,这种建模方法同样适用,将优化问题写为连续线性规划,极大地降低了优化问题的复杂度。此连续线性规划问题可通过适当的区间划分进行离散化,用分片常量函数代替优化模型中的一般函数(无限维)决策变量,通过求解有限维线性规划得到原问题的可行近似解。最后,通过数值例子分析了贴现率对企业利润的影响。  相似文献   

15.
We study a two-level inventory system that is subject to failures and repairs. The objective is to minimize the expected total cost so as to determine the production plan for a single quantity demand. The expected total cost consists of the inventory carrying costs for finished and unfinished items, the backlog cost for not meeting the demand due-date, and the planning costs associated with the ordering schedule of unfinished items. The production plan consists of the optimal number of lot sizes, the optimal size for each lot, the optimal ordering schedule for unfinished items, and the optimal due-date to be assigned to the demand. To gain insight, we solve special cases and use their results to device an efficient solution approach for the main model. The models are solved to optimality and the solution is either obtained in closed form or through very efficient algorithms.  相似文献   

16.
In this paper, we investigate the material procurement and delivery policy in a production system where raw materials enter into the assembly line from two different flow channels. The system encompasses batch production process in which the finished product demand is approximately constant for an infinite planning horizon. Two distinct types of raw materials are passed through the assembly line before to convert them into the finished product. Of the two types of raw materials, one type requires preprocessing inside the facility before the assembly operation and other group is fed straightway in the assembly line. The conversion factors are assigned to raw materials to quantify the raw material batch size required. To analyze such a system, we formulate a nonlinear cost function to aggregate all the costs of the inventories, ordering, shipping and deliveries. An algorithm using the branch and bound concept is provided to find the best integer values of the optimal solutions. The result shows that the optimal procurement and delivery policy minimizes the expected total cost of the model. Using a test problem, the inventory requirements at each stage of production and their corresponding costs are calculated. From the analysis, it is shown that the rate and direction change of total cost is turned to positive when delivery rates per batch reaches close to the optimal value and the minimum cost is achieved at the optimal delivery rate. Also, it is shown that total incremental cost is monotonically increasing, if the finished product batch size is increased, and if, inventory cost rates are increased. We examine a set of numerical examples that reveal the insights into the procurement-delivery policy and the performance of such an assembly type inventory model.  相似文献   

17.
This paper studies the production inventory problem of minimizing the expected discounted present value of production cost control in a manufacturing system with degenerate stochastic demand. We establish the existence of a unique solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with this problem. The optimal control is given by a solution to the corresponding HJB equation.  相似文献   

18.
In this paper, we consider a continuous review inventory system of a slow moving item for which the demand rate drops to a lower level at a known future time instance. The inventory system is controlled according to a one-for-one replenishment policy with a fixed lead time. Adapting to lower demand is achieved by changing the control policy in advance and letting the demand take away the excess stocks. We show that the timing of the control policy change primarily determines the tradeoff between backordering penalties and obsolescence costs. We propose an approximate solution for the optimal time to shift to the new control policy minimizing the expected total cost during the transient period. We find that the advance policy change results in significant cost savings and the approximation yields near optimal expected total costs.  相似文献   

19.
This study develops deteriorating items production inventory models with random machine breakdown and stochastic repair time. The model assumes the machine repair time is independent of the machine breakdown rate. The classical optimization technique is used to derive an optimal solution. A numerical example and sensitivity analysis are shown to illustrate the models. The stochastic repair models with uniformly distributed repair time tends to have a larger optimal total cost than the fixed repair time model, however the production up time is less than the fixed repair time model. Production and demand rate are the most sensitive parameters for the optimal production up time, and demand rate is the most sensitive parameter to the optimal total cost for the stochastic model with exponential distribution repair time.  相似文献   

20.
A perishable single item production-inventory system is studied in this paper. The objective is to describe a general model in which the production rate, the product demand rate, and the item deterioration rate are all considered as functions of time, and to discuss the optimal production stopping and restarting times which minimise the total relevant cost per unit time. In the general model, demand shortage is allowed, where some of the demand is lost and the rest is backlogged. Popular models, such as the pure inventory system and the zero shortage system, are shown to be special cases of our model. The conditions for a feasible stationary point to be optimal are given. The simplest cases with constant rates of production, demand and deterioration are discussed and shown as illustrative examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号