首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A characterization of statistical theories is given which incorporates both classical and quantum mechanics. It is shown that each statistical theory induces an associated logic and joint probability structure, and simple conditions are given for the structure to be of a classical or quantum type. This provides an alternative for the quantum logic approach to axiomatic quantum mechanics. The Bell inequalities may be derived for those statistical theories that have a classical structure and satisfy a locality condition weaker than factorizability. The relation of these inequalities to the issue of hidden variable theories for quantum mechanics is discussed and clarified.  相似文献   

2.
A general nonperturvative loop quantization procedure for metric modified gravity is reviewed. As an example, this procedure is applied to scalar-tensor theories of gravity. The quantum kinematical framework of these theories is rigorously constructed. Both the Hamiltonian and master constraint operators are well defined and proposed to represent quantum dynamics of scalar-tensor theories. As an application to models, we set up the basic structure of loop quantum Brans-Dicke cosmology. The effective dynamical equations of loop quantum Brans-Dicke cosmology are also obtained, which lay a foundation for the phenomenological investigation to possible quantum gravity effects in cosmology.  相似文献   

3.
A complete classification of simple currents of WZW theories is obtained. The proof is based on an analysis of the quantum dimensions of the primary fields. Simple currents are precisely the primaries with unit quantum dimension; for WZW theories explicit formulae for the quantum dimensions can be derived so that an identification of the fields with unit quantum dimension is possible.  相似文献   

4.
5.
The purpose of this paper is to review relativistic quantum theories with an invariant evolution parameter. Parametrized relativistic quantum theories (PRQT) have appeared under such names as constraint Hamiltonian dynamics, four-space formalism, indefinite mass, micrononcausal quantum theory, parametrized path integral formalism, relativistic dynamics, Schwinger proper time method, stochastic interpretation of quantum mechanics and stochastic quantization. The review focuses on the fundamental concepts underlying the theories. Similarities as well as differences are highlighted, and an extensive bibliography is provided.  相似文献   

6.
The first three of these axioms describe quantum theory and classical mechanics as statistical theories from the very beginning. With these, it can be shown in which sense a more general than the conventional measure theoretic probability theory is used in quantum theory. One gets this generalization defining transition probabilities on pairs of events (not sets of pairs) as a fundamental, not derived, concept. A comparison with standard theories of stochastic processes gives a very general formulation of the non existence of quantum theories with hidden variables. The Cartesian product of probability spaces can be given a natural algebraic structure, the structure of an orthocomplemented, orthomodular, quasi-modular, not modular, not distributive lattice, which can be compared with the quantum logic (lattice of all closed subspaces of an infinite dimensional Hubert space). It is shown how our given system of axioms suggests generalized quantum theories, especially Schrödinger equations, for phase space amplitudes.  相似文献   

7.
We construct and study the implications of some new non-local conserved currents that exist is a wide variety of massive integrable quantum field theories in 2 dimensions, including the sine-Gordon theory and its generalization to affine Toda theory. These non-local currents provide a non-perturbative formulation of the theories. The symmetry algebras correspond to the quantum affine Kac-Moody algebras. TheS-matrices are completely characterized by these symmetries. FormalS-matrices for the imaginary-coupling affine Toda theories are thereby derived. The application of theseS-matrices to perturbed coset conformal field theory is studied. Non-local charges generating the finite dimensional Quantum Group in the Liouville theory are briefly presented. The formalism based on non-local charges we describe provides an algernative to the quantum inverse scattering method for solving integrable quantum field theories in 2d.  相似文献   

8.
9.
We analyze the vacuum structure (degeneracy, nodes and symmetries) of some quantum theories with special emphasis on the study of its dependence on the geometry and topology of the classical configuration space. The study of the topological limit shows that many low energy properties of those quantum theories can be inferred from the structure of their topological phases. After reviewing some simple pure quantum mechanical models (planar rotor, magnetic monopole and quantum Hall effect) we focus on the study of the rich relationship existing between topologically massive gauge theories and their topological phases, Chern-Simons theories. In particular we show that, although in a finite volume the degeneracy of the quantum vacuum of gauge theories depends on the topology of the underlying Riemann surface, in an infinite volume the vacuum is unique. Finally, the topological structure of Chern-Simons theory is analyzed in a covariant formalism within a geometric regularization scheme. We discuss in some detail the structure of the different metric dependent contributions to the Chern-Simons partition function and the associated topological invariants.  相似文献   

10.
We extend the parametric representation of renormalizable non commutative quantum field theories to a class of theories which we call “covariant”, because their power counting is definitely more difficult to obtain.This class of theories is important since it includes gauge theories, which should be relevant for the quantum Hall effect.  相似文献   

11.
Based on the configuration-space generating functional of the Green functions for the gauge-invariant system in higher-order derivatives theories, the equations of the transformation properties at the quantum level have been derived. It follows that the sufficient conditions are found which implies that there exists the conservation laws and the expressions of the quantal conserved laws are also given. Applying the results to the non-Abelian Chern-Simons higher-order derivatives theories, the quantal BRST conserved charge and other conserved charges are found, the transformation properties of the conformal transformation at the quantum level is discussed, the quantal conserved angular momentum is derived, it is pointed out that fractional spin in this system may be also preserved in quantum theories. But the connection between the symmetries and conservation laws in classical theories are not always preserved in quantum theories.  相似文献   

12.
This paper presents the first examples of massless relativistic quantum field theories which are interacting and asymptotically complete. These two-dimensional theories are obtained by an application of a deformation procedure, introduced recently by Grosse and Lechner, to chiral conformal quantum field theories. The resulting models may not be strictly local, but they contain observables localized in spacelike wedges. It is shown that the scattering theory for waves in two dimensions, due to Buchholz, is still valid under these weaker assumptions. The concepts of interaction and asymptotic completeness, provided by this theory, are adopted in the present investigation.  相似文献   

13.
Deformations of quantum field theories which preserve Poincaré covariance and localization in wedges are a novel tool in the analysis and construction of model theories. Here a general scenario for such deformations is discussed, and an infinite class of explicit examples is constructed on the Borchers-Uhlmann algebra underlying Wightman quantum field theory. These deformations exist independently of the space-time dimension, and contain the recently studied warped convolution deformation as a special case. In the special case of two-dimensional Minkowski space, they can be used to deform free field theories to integrable models with non-trivial S-matrix.  相似文献   

14.
《Nuclear Physics B》1999,541(3):566-614
We present a general method for constructing perturbative quantum field theories with global symmetries. We start from a free non-interacting quantum field theory with given global symmetries and we determine all perturbative quantum deformations assuming the construction is not obstructed by anomalies. The method is established within the causal Bogoliubov-Shirkov-Epstein-Glaser approach to perturbative quantum field theory (which leads directly to a finite perturbative series and does not rely on an intermediate regularization). Our construction can be regarded as a direct implementation of Noether's method at the quantum level. We illustrate the method by constructing the pure Yang-Mills theory (where the relevant global symmetry is BRST symmetry), and the N = 1 supersymmetric model of Wess and Zumino. The whole construction is done before the so-called adiabatic limit is taken. Thus, all considerations regarding symmetry, unitarity and anomalies are well defined even for massless theories.  相似文献   

15.
We show that in supersymmetric theories with solitons, the usual supersymmetry algebra is not valid; the algebra is modified to include the topological quantum numbers as central charges. Using the corrected algebra, we are able to show that in certain four dimensional gauge theories, there are no quantum corrections to the classical mass spectrum. These are theories for which Bogomolny has derived a classical bound; the argument involves showing that Bogomolny's bound is valid quantum mechanically and that it is saturated.  相似文献   

16.
The renormalizability of quantum gravity remains an open question while it has been established recently that quantum gravity in the presence of standard sources is non-renormalizable. In view of traditional confusion and ambiguities surrounding non-renormalizable quantum field theories, it has been felt that physical theories must be renormalizable. Recently a new, nonperturbative view of non-renormalizable theories has been suggested that may have relevance for various interactions including gravity and various sources. In a path integral approach to quantum field theory such a view attributes ‘hard cores’ in the space of field histories to non-renormalizable interactions. Just as with more familiar ‘hard cores’, turning off the interaction does not completely remove all effects of the potential. Consequently the interacting theory is not even continuously connected to the usual free theory, but rather to an alternative ‘pseudo-free’ theory that incorporates the vestiges of the ‘hard cores’. Some insight into what is the significance and interpretation of non-renormalizable interactions can be gleaned from exactly soluble models. Application of this philosophy of non-renormalizable interactions is discussed for the gravitational field in interaction with some standard sources.  相似文献   

17.
We discuss some simple models related to quantum corrections of the MIT-bag in the framework of local field theories in two space-time dimensions. A recent result due to A. Chodos and A. Klein is generalized. We find that the corresponding quantum field theories become free or have an energy spectrum unbounded from below.  相似文献   

18.
This paper examines the logical interpretation of quantum mechanics. Since this interpretation is based on a proof by Kochen and Specker that purports to demonstrate that hidden variable theories for quantum mechanics are excluded, the proof and its significance for the understanding of hidden variable theories and standard quantum mechanics are discussed.Work supported by the National Science Foundation.  相似文献   

19.
A universal, unified theory of transformations of physical systems based on the propositions of probabilistic physics is developed. This is applied to the treatment of decay processes and intramolecular rearrangements. Some general features of decay processes are elucidated. A critical analysis of the conventional quantum theories of decay and of Slater's quantum theory of intramolecular rearrangements is given. It is explained why, despite the incorrectness of the decay theories in principle, they can give correct estimations of decay rate constants. The reasons for the validity of the Arrhenius formula for the temperature dependence of an intramolecular rearrangement rate constant are discussed. A criterion for the possibility of a proper intramolecular rearrangement is given. The issue of causality in quantum physics is settled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号