首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article considers the inverse absolute and the inverse vertex 1-center location problems with uniform cost coefficients on a tree network T with n+1 vertices. The aim is to change (increase or reduce) the edge lengths at minimum total cost with respect to given modification bounds such that a prespecified vertex s becomes an absolute (or a vertex) 1-center under the new edge lengths. First an O(nlogn) time method for solving the height balancing problem with uniform costs is described. In this problem the height of two given rooted trees is equalized by decreasing the height of one tree and increasing the height of the second rooted tree at minimum cost. Using this result a combinatorial O(nlogn) time algorithm is designed for the uniform-cost inverse absolute 1-center location problem on tree T. Finally, the uniform-cost inverse vertex 1-center location problem on T is investigated. It is shown that the problem can be solved in O(nlogn) time if all modified edge lengths remain positive. Dropping this condition, the general model can be solved in O(rvnlogn) time where the parameter rv is bounded by ⌈n/2⌉. This corrects an earlier result of Yang and Zhang.  相似文献   

2.
We present an O(min(Kn,n2)) algorithm to solve the maximum integral multiflow and minimum multicut problems in rooted trees, where K is the number of commodities and n is the number of vertices. These problems are NP-hard in undirected trees but polynomial in directed trees. In the algorithm we propose, we first use a greedy procedure to build the multiflow then we use duality properties to obtain the multicut and prove the optimality.  相似文献   

3.
In this paper, we consider single machine SLK due date assignment scheduling problem in which job processing times are controllable variables with linear costs. The objective is to determine the optimal sequence, the optimal common flow allowance and the optimal processing time compressions to minimize a total penalty function based on earliness, tardiness, common flow allowance and compressions. We solve the problem by formulating it as an assignment problem which is polynomially solvable. For some special cases, we present an O(n logn) algorithm to obtain the optimal solution respectively.  相似文献   

4.
In this paper, we consider single machine scheduling problem in which job processing times are controllable variables with linear costs. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time, total absolute differences in completion times and total compression cost; minimizing a cost function containing total waiting time, total absolute differences in waiting times and total compression cost. The problem is modelled as an assignment problem, and thus can be solved with the well-known algorithms. For the case where all the jobs have a common difference between normal and crash processing time and an equal unit compression penalty, we present an O(n log n) algorithm to obtain the optimal solution.  相似文献   

5.
We consider a variant of the classical two median facility location problem on a tree in which vertices are allowed to have positive or negative weights. This problem was proposed by Burkard et al. in 2000 (R.E. Burkard, E. Çela, H. Dollani, 2-medians in trees with pos/neg-weights, Discrete Appl. Math. 105 (2000) 51-71). who looked at two objectives, finding the total minimum weighted distance (MWD) and the total weighted minimum distance (WMD). Their approach finds an optimal solution in O(n2) time and O(n3) time, respectively, with better performance for special trees such as paths and stars. We propose here an O(nlogn) algorithm for the MWD problem on trees of arbitrary shape. We also briefly discuss the WMD case and argue that it can be solved in time. However, a systematic exposition of the later case cannot be contained in this paper.  相似文献   

6.
For any tree T (labelled, not rooted) of order n, it will be shown that the average number of nodes in a subtree of T is at least (n + 2)3, with this minimum achieved iff T is a path. For T rooted, the average number of nodes in a subtree containing the root is at least (n + 1)2 and always exceeds the average over all unrooted subtrees. For the maximum mean, examples show that there are arbitrarily large trees in which the average subtree contains essentially all of the nodes. The mean subtree order as a function on trees is also shown to be monotone with respect to inclusion.  相似文献   

7.
This paper considers a stochastic version of the linear continuous type knapsack problem in which the cost coefficients are random variables. The problem is to find an optimal solution and an optimal probability level of the chance constraint. This problem P0 is first transformed into a deterministic equivalent problem P. Then a subproblem with a positive parameter is introduced and a close relation between P and its subproblem is shown. Further, an auxiliary problem of the subproblem is introduced and a direct relation between P and the auxiliary problem is derived through a relation connecting the subproblem and its auxiliary problem. Fully utilizing these relations, an efficient algorithm is proposed that finds an optimal solution of P in at most O(n4) computational time where n is the number of decision variables. Finally, further research problems are discussed.  相似文献   

8.
Saadani et al. [N.E.H. Saadani, P. Baptiste, M. Moalla, The simple F2∥Cmax with forbidden tasks in first or last position: A problem more complex that it seems, European Journal of Operational Research 161 (2005) 21–31] studied the classical n-job flow shop scheduling problem F2∥Cmax with an additional constraint that some jobs cannot be placed in the first or last position. There exists an optimal job sequence for this problem, in which at most one job in the first or last position is deferred from its position in Johnson’s [S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68] permutation. The problem was solved in O(n2) time by enumerating all candidate job sequences. We suggest a simple O(n) algorithm for this problem provided that Johnson’s permutation is given. Since Johnson’s permutation can be obtained in O(n log n) time, the problem in Saadani et al. (2005) can be solved in O(n log n) time as well.  相似文献   

9.
This paper addresses a new and efficient linearization technique to solve mixed 0-1 polynomial problems to achieve a global optimal solution. Given a mixed 0-1 polynomial term z=ctx1x2xny, where x1,x2,…,xn are binary (0-1) variables and y is a continuous variable. Also, ct can be either a positive or a negative parameter. We transform z into a set of auxiliary constraints which are linear and can be solved by exact methods such as branch and bound algorithms. For this purpose, we will introduce a method in which the number of additional constraints is decreased significantly rather than the previous methods proposed in the literature. As is known in any operations research problem decreasing the number of constraints leads to decreasing the mathematical computations, extensively. Thus, research on the reducing number of constraints in mathematical problems in complicated situations have high priority for decision makers. In this method, each n-auxiliary constraints proposed in the last method in the literature for the linearization problem will be replaced by only 3 novel constraints. In other words, previous methods were dependent on the number of 0-1 variables and therefore, one auxiliary constraint was considered per 0-1 variable, but this method is completely independent of the number of 0-1 variables and this illustrates the high performance of this method in computation considerations. The analysis of this method illustrates the efficiency of the proposed algorithm.  相似文献   

10.
We present a sequential dual-simplex algorithm for the linear problem which has the same complexity as the algorithms of Balinski [3,4] and Goldfarb [8]: O(n2) pivots, O(n2 log n + nm) time. Our algorithm works with the (dual) strongly feasible trees and can handle rectangular systems quite naturally.  相似文献   

11.
An algorithm is presented which solves bounded quadratic optimization problems with n variables and one linear constraint in at most O(n) steps. The algorithm is based on a parametric approach combined with well-known ideas for constructing efficient algorithms. It improves an O(n log n) algorithm which has been developed for a more restricted case of the problem.  相似文献   

12.
The two functions in question are mappings: [n]→[n], with [n] = {1, 2,?,n}. The acyclic function may be represented by forests of labeled rooted trees, or by free trees withn + 1 points; the parking functions are associated with the simplest ballot problem. The total number of each is (n + 1) n-1. The first of two mappings given is based on a simple mapping, due to H. O. Pollak, of parking functions on tree codes. In the second, each kind of function is mapped on permutations, arising naturally from characterizations of the functions. Several enumerations are given to indicate uses of the mappings.  相似文献   

13.
For a labeled tree on the vertex set {1,2,…,n}, the local direction of each edge (ij) is from i to j if i<j. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a vertex is called its indegree. Thus the local (resp. global) indegree sequence λ=e11e22… of a tree on the vertex set {1,2,…,n} is a partition of n−1. We construct a bijection from (unrooted) trees to rooted trees such that the local indegree sequence of a (unrooted) tree equals the global indegree sequence of the corresponding rooted tree. Combining with a Prüfer-like code for rooted labeled trees, we obtain a bijective proof of a recent conjecture by Cotterill and also solve two open problems proposed by Du and Yin. We also prove a q-multisum binomial coefficient identity which confirms another conjecture of Cotterill in a very special case.  相似文献   

14.
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Yx x T . We use the non-convex constraint ${ Y - x x^T \preccurlyeq 0}$ to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y ? x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint ${ Y - x x^T \succcurlyeq 0}$ to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.  相似文献   

15.
Let A be a commutative k-algebra over a field of k and Ξ a linear operator defined on A. We define a family of A-valued invariants Ψ for finite rooted forests by a recurrent algorithm using the operator Ξ and show that the invariant Ψ distinguishes rooted forests if (and only if) it distinguishes rooted trees T, and if (and only if) it is finer than the quantity α(T)=|Aut(T)| of rooted trees T. We also consider the generating function with , where is the set of rooted trees with n vertices. We show that the generating function U(q) satisfies the equation . Consequently, we get a recurrent formula for Un (n?1), namely, U1=Ξ(1) and Un=ΞSn−1(U1,U2,…,Un−1) for any n?2, where are the elementary Schur polynomials. We also show that the (strict) order polynomials and two well-known quasi-symmetric function invariants of rooted forests are in the family of invariants Ψ and derive some consequences about these well-known invariants from our general results on Ψ. Finally, we generalize the invariant Ψ to labeled planar forests and discuss its certain relations with the Hopf algebra in Foissy (Bull. Sci. Math. 126 (2002) 193) spanned by labeled planar forests.  相似文献   

16.
In this paper we generalize the classical dynamic lot-sizing problem by considering production capacity constraints as well as delivery and/or production time windows. Utilizing an untraditional decomposition principle, we develop a polynomial-time algorithm for computing an optimal solution for the problem under the assumption of non-speculative costs. The proposed solution methodology is based on a dynamic programming algorithm that runs in O(nT4) time, where n is the number of demands and T is the length of the planning horizon.  相似文献   

17.
We prove new results for approximating the graph-TSP and some related problems. We obtain polynomial-time algorithms with improved approximation guarantees. For the graph-TSP itself, we improve the approximation ratio to 7=5. For a generalization, the minimum T-tour problem, we obtain the first nontrivial approximation algorithm, with ratio 3=2. This contains the s-t-path graph-TSP as a special case. Our approximation guarantee for finding a smallest 2-edge-connected spanning subgraph is 4=3. The key new ingredient of all our algorithms is a special kind of ear-decomposition optimized using forest representations of hypergraphs. The same methods also provide the lower bounds (arising from LP relaxations) that we use to deduce the approximation ratios.  相似文献   

18.
19.
A fully polynomial ?-approximation algorithm is developed for the 0–1 knapsack problem. The algorithm uses results of Lawler and Ibarra and Kim. A pseudo-polynomial dynamic programming algorithm is first suggested which solves the problem in O(nb log n) time and O(b) space.  相似文献   

20.
In this paper we present an efficient approach for solving single allocation p-hub problems with two or three hubs. Two different variants of the problem are considered: the uncapacitated single allocation p-hub median problem and the p-hub allocation problem. We solve these problems using new mixed integer linear programming formulations that require fewer variables than those formerly used in the literature. The problems that we solve here are the largest single allocation problems ever solved. The numerical results presented here will demonstrate the superior performance of our mixed integer linear programs over traditional approaches for large problems. Finally we present the first mixed integer linear program for solving single allocation hub location problems that requires only O(n2) variables and O(n2) constraints that is valid for any number of hubs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号