首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A facile preparative procedure was developed for the synthesis of 17-and 18-electron closo-(diphosphine)ruthenacarborane complexes. This method is based on the replacement of PPh3 ligands with bis(diphenylphosphino)alkanes Ph2P(CH2)nPPh2 (n = 2—4) in ruthenacarborane 3,3-(PPh3)2-3-Cl-3-H-closo-3,1,2-RuC2B9H11. The resulting complexes exhibit high activity in controlled radical polymerization of vinyl monomers.  相似文献   

2.
The upper limit of the free energy of the barrier to rotation of the platinum bis-phosphine unit in [3,3-(PMe2Ph)2-closo-3,1,2-PtC2B9H11] 1 is 30< kJ mol−1 in dichloromethane solution. This relatively low value is similar in magnitude to crystal-packing forces, and compound 1 crystallises from CH2Cl2-hexane solution as a 1 : 1 mixture of two different conformers with significantly different platinum-to-C2B3 bonding. These observations lead to the proposal of a general mechanism for the mutual rotation of {M(PR3)2} units above C2B9H11.  相似文献   

3.
4.
5.
A reaction of complexes CoCl2(dppe) (dppe is the 1,2-bis(diphenylphosphino)ethane) or CoCl2(dppp) (dppp is the 1,3-bis(diphenylphosphino)propane) with [K][7,8-nido-C2B9H12] upon reflux in benzene led to the mixed ligand closo-cobaltacarboranes [3,3-(Ph2P(CH2) n PPh2)-3-Cl-closo-3,1,2-CoIIIC2B9H11] (n = 2 and 3, respectively) in moderate yields (34 and 16%). The structure of the 18-electron complexes in solution and the solid state was studied by NMR and IR spectroscopy, the structure in the case of the closo-complex with dppe-ligand was confirmed by X-ray crystallography.  相似文献   

6.
The reaction of bis(o-dicarbollyl)nickel(iv) with PPh3 in EtOH gave rise to the complex 3,3-(PPh3)2-3,1,2-NiC2B9H11 (2) whose structure was established by X-ray diffraction analysis.  相似文献   

7.
The unprecedented metal-mediated transformation of an alkyne into a B,B' bridging alkene is reported. Also, the unprecedented synthesis of a conjugated dialkene derivative of [3,3'-Co(1,2-C2B9H11)2]- generated only from an alkyne, contrary to the usual case where an alkyne and an alkene are needed, is described. This has been possible through the singular capacity of a B-H to produce hydroboration.  相似文献   

8.
1 INTRODUCTION The chalcogenidometallates with open frame- works have attracted considerable interest as pos- sible zeolite-like materials, of which highly interes- ting properties could be expected. Over the last de- cades a large number of thioanti…  相似文献   

9.
Preparation, 11B NMR, Vibrational Spectra, and Crystal Structure of [(C5H5N)2CH2][1-(O2N)B10H9] By reaction of [B10H10]2? in aqueous acetonitrile with a saturated solution of NO2 in dichloromethane [1-(O2N) · B10H9]2? and [B10H9(NO)B10H9]3? are formed which can be separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound. The X-ray structure determination of [(C5H5N)2CH2][1-(O2N)B10H9] (triclinic, space group P1 , a = 7.1530(9), b = 8.3753(8), c = 15.198(2) Å, α = 96.00(1), β = 95.48(1), γ = 95.60(1)°, Z = 2) reveals the coordination of the NO2 group via N with a B1? N distance of 1.535(5) Å and an O2? N? O1 angle of 119.3(3)°. The 11B NMR spectrum exhibits the characteristic feature (1 : 1 : 4 : 4) of an apical monosubstituted B10 cluster with a strong downfield shift of the ipso-B atom at +13.4 ppm. The IR and Raman spectra show strong NO stretching vibrations at 1381 und 1420 cm?1.  相似文献   

10.
closo-Undecaborates were synthesized by the deprotonation of B11H13(SMe2) with LitBu in thp or K[BHEt3] in thf, [Li(thp)3]2[B11H11] and K2[B11H11] being obtained in 83 and 93% yield, respectively. K2[B11H11] can be transformed into A2[B11H11] with the corresponding ammonium chlorides in aqueous solution (A = [NMe3Ph], [NBzlEt3], [N(PPh3)2]). The crystal structure analysis of [Li(thp)3]2[B11H11] (space group P21/c) reveals a rather distorted octadecahedron for the [B11H11]2– anion, whereas the corresponding octadecahedron in [NBzlEt3]2[B11H11] (space group P212121) exhibits a structure close to C2v symmetry, expected for the free anion. The protonation of [B11H11]2– at low temperature gives [B11H12], whose structure could be elucidated by NMR methods; it is formed, apparently, by the opening of the B1–B4 edge of [B11H11]2– in the course of its known degenerate skeletal rearrangement, followed by the protonation of the B2–B4 edge. The reaction of [B11H12] with a second molecule of the acid HX (X = CF3COO) gives nido-[B11H13X]. The addition of BH3 to [B11H11]2– yields closo-[B12H12]2– under loss of H2. Two [B11H11]2– units are fused by the aid of FeCl3, with the known anion [B22H22]2– as the product, whose 11B-NMR signals could completely be assigned on the basis of Cs symmetry. The compound [NBzlEt3][N(PPh3)2][B22H22] crystallizes in the space group Pna21.  相似文献   

11.
Reaction of cis-Pt(PMe2Ph)2Cl2 with Tl2[7-Ph-7,8-nido-C2B9H10] affords 1-Ph-3,3-(PMe2Ph)2-3,1,2-PtC2B9H10, mild thermolysis (55°C) of which yields 1-Ph-3,3-(PMe2Ph)2-3,1,11-PtC2B9H10 and 11-Ph-3,3-(PMe2Ph)2-3,1,11-PtC2B9H10. Both of the latter compounds are produced by the microwave irradiation of a mixture of cis-Pt(PMe2Ph)2Cl2 and [HNMe3][7-Ph-7,8-nido-C2B9H11]. When cis-Pt(PMe2Ph)2Cl2 is allowed to react with Tl2[7,8-Ph2-7,8-nido-C2B9H9] at room temperature the only isolable species is 1,11-Ph2-3,3-(PMe2Ph)2-3,1,11-PtC2B9H9. The generation of rearranged products with 3,1,11-PtC2B9 architectures is inconsistent with a diamond-square-diamond mechanism for the isomerisation of icosahedral heteroboranes.  相似文献   

12.
Three novel metal-organic complexes with formulas [Ni(C9N2O2H7)2(CH3OH)2](1),[Zn(C9N2O2H7)2(H2O)2](2) and [Cd(C9N2O2H7)2(CH3OH)2](3) were synthesized by the reactions of Ni,Zn and Cd salts with ethyl 2-benzimidazolylacetate under hydrothermal conditions or layering technique,and characterized by single-crystal X-ray diffraction analysis,IR spec-troscopy,solid-state luminescent properties and thermogravimetric(TG) analysis.The crystal data for these three complexes are as follows:for 1,monoclinic,space group P21/c,a = 9.384(3),b = 9.634(3),c = 11.292(3) ,β = 95.787(5)°,V = 1015.7(5) 3,Z = 2,F(000) = 492,Dc = 1.547 Kg/m3,μ = 1.002 mm-1,the final R = 0.0451 and wR = 0.0900 for 1833 observed reflections with Ⅰ 2σ(Ⅰ);for 2,orthorhombic,space group Pbca,a = 10.031(4),b = 10.379(4),c = 17.525(7),V = 1824.6(12) 3,Z = 4,F(000) = 928,Dc = 1.645 Kg/m3,μ = 1.392 mm-1,the final R = 0.0452 and wR = 0.0996 for 1661 observed reflections with Ⅰ 2σ(Ⅰ);for 3,monoclinic,space group P21/c,a = 9.9114(13),b =10.4852(15),c = 10.4120(14) ,β = 108.453(5)°,V = 1026.4(2) 3,Z = 2,F(000) = 532,Dc = 1.705 Kg/m3,μ = 1.110 mm-1,the final R = 0.0322 and wR = 0.0805 for 1822 observed reflections with Ⅰ 2σ(Ⅰ).In the three complexes,the ethyl 2-benzimidazolylacetate shows the same chelating mode,and the adjacent units are interlinked into a two-dimensional layer through hydrogen-bonds(O-H···O,N-H···O).  相似文献   

13.
From the reaction of 1‐HOCPh2‐2‐NMe2C6H4 ( 1 ), 1‐HOC(C6H11)2‐2‐NMe2C6H4 ( 2 ) and 1‐HOCPh2CH2‐2‐NMe2C6H4 ( 3 ) with n‐BuLi in diethyl ether, the solvent‐free chelated dimethylamino lithium alkoxides [1‐LiOCPh2‐2‐NMe2C6H4]2 ( 4 ), [1‐LiOC(C6H11)2‐2‐NMe2C6H4]2 ( 5 ) and [1‐LiOCPh2CH2‐2‐NMe2C6H4]2 ( 6 ) were obtained. The lithium alkoxides 4 – 6 were characterized by 1H, 7Li, and 13C NMR spectroscopy. Crystal structure determinations of 5 and 6 were carried out. Compounds 5 and 6 are examples of structurally characterized solvent‐free chelated dimethylamino lithium alkoxides and 6 is a rare example of this type containing a seven‐membered ring. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Reactions of PhAsCl2 with BrMg(CH2)nMgBr (n = 4 or 5) in THF gave phenylarsacycloalkanes as colourless oily liquids which could be distilled under vacuum. Treatment of PhAs(CH2)n­with MCl2(RCN)2 (M = Pd or Pt; R = Ph­or Me) afforded mononuclear complexes, [MCl2{PhAs(CH2)n}2]. Reactions with [Pt2Cl2(μ‐Cl)2(PEt3)2] gave mixed‐ligand complexes, [PtCl2(PEt3){PhAs(CH2)n]. The palladium complexes adopt a trans geometry whereas the platinum complexes exist in a cis configuration. The crystal and molecular structure of [PdCl2(PhAsCH2CH2CH2CH2CH2)2] was determined by X‐ray diffraction methods. The molecule consists of a square‐planar palladium atom with trans chlorides and trans arsa ligands. The six‐membered ‘AsC5′ ring adopts a chair conformation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The complex [7,10-mu-H-7-CO-7,7-(PPh3)2-isonido-7,8,9-ReC2B7H9] has been synthesized by treatment of the complex salt [NHMe3][3,3-Cl2-3,3-(CO)2-closo-3,1,2-ReC2B9H11] with PPh3 in refluxing THF (tetrahydrofuran) and isolated as intensely colored orange-red microcrystals. Spectroscopic NMR and IR data have suggested that the product has a highly asymmetric structure with two inequivalent PPh3 ligands and a single CO ligand. Measurement of 11B NMR spectra in particular have indicated seven distinct boron vertexes, although the resulting cage degradation by removal of two BH vertexes was confirmed only following X-ray crystallographic analysis, which revealed the pentadecahedral isonido-7,8,9-ReC2B7 architecture. The 11B NMR resonances span an enormous chemical shift range (Deltadelta = 113), and this appears to be a direct consequence of the deshielding of the boron vertex directly opposite the quadrilateral |ReCCB| aperture. The new complex has been shown by electrochemical measurements to undergo a reversible one-electron oxidation. Digitally simulated cyclic voltammograms support a proposed square scheme (E(1/2) = 0.58, 0.69 V vs ferrocene) involving a reversible isonido-closo transition of the metallacarborane cage. Most unusually for a metallacarborane complex, ambient temperature solutions in CH2Cl2 and DMF have been shown to be intensely turquoise-blue fluorescent (lambda(em) = 442 nm, Phi = 0.012). Fluorescence spectroscopy measurements in MeTHF (2-methyltetrahydrofuran) glass at 77 K have indicated that the likely cause of such a broad emission is dual fluorescence (lambda(em) = 404, 505 nm), with both emissions displaying vibronic structure. Following excited-state lifetime decay analysis, the emissive behavior has been accredited to metal-perturbed 1IL states, with the lower energy emission arising from a slight geometric distortion of the initially excited complex.  相似文献   

16.
17.
The nickelacarboranes [NEt(4)][2-(eta(3)-C(3)H(4)R)-closo-2,1,7-NiC(2)B(9)H(11)] (R = H (1a), Ph (1b)) have been synthesized via reaction between [Na](2)[nido-7,9-C(2)B(9)H(11)] and [Ni(2)(micro-Br)(2)(eta(3)-C(3)H(4)R)(2)] in THF (THF = tetrahydrofuran), followed by addition of [NEt(4)]Cl. Protonation of 1a in the presence of a donor ligand L affords the complexes [2,2-L(2)-closo-2,1,7-NiC(2)B(9)H(11)] (L = CO (2), CNBu(t) (3)). Addition of PEt(3) (1 equiv) to 2 produces quantitative conversion to [2-CO-2-PEt(3)-closo-2,1,7-NiC(2)B(9)H(11)], 4. Species 2-4 exhibit in solution hindered rotation of the NiL(2) fragment with respect to the eta(5)-C(2)B(9) cage unit. Protonation of 1a in the presence of a diene affords the neutral complexes [2-(eta(2):eta(2)-diene)-closo-2,1,7-NiC(2)B(9)H(11)] (diene = C(5)Me(5)H (5), dcp (6), cod (7), nbd (8), chd (9), and cot (10a); dcp = dicyclopentadiene, cod = 1,5-cyclooctadiene, nbd = norbornadiene, chd = 1,3-cyclohexadiene, and cot = cyclooctatetraene). Variable temperature (1)H NMR experiments show that the [Ni(diene)] fragments are freely rotating even at 193 K. A small quantity of the di-cage species [2,2'-micro-(1,2:5,6-eta-3,4:7,8-eta-cot)-(closo-2,1,7-NiC(2)B(9)H(11))(2)] (10b) is formed as a coproduct in the synthesis of 10a. This species can be rationally synthesized by protonation of 1a and subsequent addition of 10a.  相似文献   

18.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

19.
Conclusions By a complete x-ray diffraction study of cesium 9,10,11-trimethyl-7,8-dicarba-nido-undecaborate(1-) we proved the axial orientation of the Me group attached to the B10 atom of the open face of the nido-carborane polyhedron. This serves as an additional proof of the stereospecificity of the alkylation reaction of the dicarbollide ions and the necessity for a migration stage of the boron atom with the substituent to the site of the deficient apex of the icosahedron to form a derivative with an equatorial disposition of the alkyl group.The atoms in the carborane polyhedron are numbered as in [1].Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2474–2481, November, 1979.  相似文献   

20.
By reaction of Na2[B9H9] with the appropriate N-halogenosuccinimide, the monohalogenated anion [1-XB9H8]2- (X = Cl, Br, or I) is formed. The X-ray diffraction analyses performed on single crystals of (Ph4P)2[1-XB9H8].CH3CN (X = Cl, Br, I) reveal that the tricapped trigonal prismatic geometry of the cluster is retained after substitution in the 1-position. Crystallographic data are as follows for (Ph4P)2[1-XB9H8].CH3CN. X = Cl, Br: monoclinic, space group P2(1), a = 10.7 A, b = 32.9 A, c = 13.8 A, beta = 96 degrees, Z = 4, R1 = 0.038 and R1 = 0.036, respectively. X = I: monoclinic, space group P2(1)/n, a = 10.5 A, b = 13.6 A, c = 33.4 A, beta = 94 degrees, Z = 4, R1 = 0.094. The compounds have been characterized by vibrational and 11B NMR spectroscopy as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号