首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the intramolecular G-quadruplex structure of human telomeric DNA in physiologically relevant K(+) solution. This G-quadruplex, whose (3 + 1) topology differs from folds reported previously in Na(+) solution and in a K(+)-containing crystal, involves the following: one anti.syn.syn.syn and two syn.anti.anti.anti G-tetrads; one double-chain reversal and two edgewise loops; three G-tracts oriented in one direction and the fourth in the opposite direction. The topological characteristics of this (3 + 1) G-quadruplex scaffold should provide a unique platform for structure-based anticancer drug design targeted to human telomeric DNA.  相似文献   

2.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

3.
Nucleic acid quadruplexes, based on the guanine quartet, can arise from one or several strands, depending on the sequence. Those consisting of a single strand are usually folded in one of two principal topologies: antiparallel, in which all or half of the guanine stretches are antiparallel to each other, or parallel, in which all guanine stretches are parallel to each other. In the latter, all guanine nucleosides possess the anti conformation about the glycosidic bond, while in the former, half possess the anti conformation, and half possess the syn conformation. While antiparallel is the more common fold, examples of biologically important, parallel quadruplexes are becoming increasingly common. Thus, it is of interest to understand the forces that determine the quadruplex fold. Here, we examine the influence of individual nucleoside conformation on the overall folding topology by selective substitution of rG for dG. We can reverse the antiparallel fold of the thrombin binding aptamer (TBA) by this approach. Additionally, this substitution converts a unimolecular quadruplex into a bimolecular one. Similar reverse substitutions in the all-RNA analogue of TBA result in a parallel to antiparallel change in topology and alter the strand configuration from bimolecular to unimolecular. On the basis of the specific substitutions made, we conclude that the strong preference of guanine ribonucleosides for the anti conformation is the driving force for the change in topology. These results demonstrate how conformational properties of guanine nucleosides govern not only the quadruplex folding topology but also impact quadruplex molecularity and provide a means to control these properties.  相似文献   

4.
A unimolecular G‐quadruplex with a hybrid‐type topology and propeller, diagonal, and lateral loops was examined for its ability to undergo structural changes upon specific modifications. Substituting 2′‐deoxy‐2′‐fluoro analogues with a propensity to adopt an anti glycosidic conformation for two or three guanine deoxyribonucleosides in syn positions of the 5′‐terminal G‐tetrad significantly alters the CD spectral signature of the quadruplex. An NMR analysis reveals a polarity switch of the whole tetrad with glycosidic conformational changes detected for all four guanine nucleosides in the modified sequence. As no additional rearrangement of the overall fold occurs, a novel type of G‐quadruplex is formed with guanosines in the four columnar G‐tracts lined up in either an all‐syn or an all‐anti glycosidic conformation.  相似文献   

5.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design targeting the quadruplex. Recent studies have raised significant controversy regarding the exact structure of the quadruplex formed by human telomeric DNA in a physiological relevant environment. Studies on the crystal prepared in K+ solution revealed a distinct propeller-shaped parallel-stranded conformation. However, many later works failed to confirm such structure in physiological K+ solution but rather led to the identification of a different hybrid-type mixed parallel/antiparallel quadruplex. Here we demonstrate that human telomere DNA adopts a parallel-stranded conformation in physiological K+ solution under molecular crowding conditions created by PEG. At the concentration of 40% (w/v), PEG induced complete structural conversion to a parallel-stranded G-quadruplex. We also show that the quadruplex formed under such a condition has unusual stability and significant negative impact on telomerase processivity. Since the environment inside cells is molecularly crowded, our results obtained under the cell mimicking condition suggest that the parallel-stranded quadruplex may be the more favored structure under physiological conditions, and drug design targeting the human telomeric quadruplex should take this into consideration.  相似文献   

6.
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate–DNA conjugates containing the oligonucleotide sequences of G‐quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose–TBA conjugate shows stacking interactions between the carbohydrate and the DNA G‐tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5′‐end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G‐quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G‐quadruplex ligands.  相似文献   

7.
G-quadruplex conformations within a sequence of three quadruplex units of human telomeric DNA were studied by two-frequency pulsed electron paramagnetic resonance (EPR) spectroscopy. In contrast to some individual G-quadruplexes, within the higher-order human telomeric sequence a (3+1) hybrid structure is formed.  相似文献   

8.
Electrospray mass spectrometry (ESI-MS) was used to monitor the kinetics of duplex formation between the human telomeric DNA quadruplex and its complementary strand; the complexation of telomestatin to the G-quadruplex delays the unwinding of the quadruplex structure and formation of the duplex.  相似文献   

9.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

10.
We provide a novel insight into dynamic conversion of the human telomeric G-quadruplexes and particularly a step-to-step transformation pathway of the long sequence containing two quadruplex units in K(+) solution in a molecular crowding environment, implying a possible behavior of the human telomeric DNA under physiological conditions.  相似文献   

11.
G‐rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper‐catalyzed azide‐alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G‐quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context.  相似文献   

12.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

13.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

14.
IntroductionTelomeresaretheendregionsofchromosomesconsistingofDNAandassociatedprotein .Thetelom ericDNAcontainsG richrepeatsofDNAsequences .ThisG richoverhangcanformastable guanine quadruplexinvitrounder physiologicalcondi tions[1,2 ] .Itisnowwell establishedt…  相似文献   

15.
We demonstrate by NMR that the two-repeat human telomeric sequence d(TAGGGTTAGGGT) can form both parallel and antiparallel G-quadruplex structures in K(+)-containing solution. Both structures are dimeric G-quadruplexes involving three stacked G-tetrads. The sequence d(TAGGGUTAGGGT), containing a single thymine-to-uracil substitution at position 6, formed a predominantly parallel dimeric G-quadruplex with double-chain-reversal loops; the structure was symmetric, and all guanines were anti. Another modified sequence, d(UAGGGT(Br)UAGGGT), formed a predominantly antiparallel dimeric G-quadruplex with edgewise loops; the structure was asymmetric with six syn guanines and six anti guanines. The two structures can coexist and interconvert in solution. For the latter sequence, the antiparallel form is more favorable at low temperatures (<50 degrees C), while the parallel form is more favorable at higher temperatures; at temperatures lower than 40 degrees C, the antiparallel G-quadruplex folds faster but unfolds slower than the parallel G-quadruplex.  相似文献   

16.
The quest for ligands that specifically bind to particular G‐quadruplex nucleic acid structures is particularly important to conceive molecules with specific effects on gene expression or telomere maintenance, or conceive structure‐specific molecular probes. Using electrospray mass spectrometry in native conditions, we reveal a highly cooperative and selective 2:1 binding of CuII‐tolylterpyridine complexes to human telomeric G‐quadruplexes. Circular dichroism and comparisons of affinities for different sequences reveal a marked preference for antiparallel structures with diagonal loops and/or wide‐medium–narrow‐medium groove‐width order. The cooperativity is attributed to conformational changes in the polymorphic telomeric G‐quadruplex sequences, which convert preferably into an antiparallel three‐quartet topology upon binding of two ligands.  相似文献   

17.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

18.
The ligands which can facilitate the formation and stabilize G‐quadruplex structures have attracted enormous attention due to their potential ability of inhibiting the telomerase activity and halting tumor cell proliferation. It is noteworthy that the abilities of the quaternary benzophenanthridine alkaloids (QBAs), the very important G‐quadruplex binders, in inducing the formation of human telomeric DNA G‐quadruplex structures, have not been reported. Herein, the interaction between single‐strand human telomeric DNA and three QBAs: Sanguinarine (San), Nitidine (Nit) and Chelerythrine (Che), has been investigated. Although these molecules are very similar in structure, they exhibit significantly different abilities in inducing oligonucleotide d(TTAGGG)4 (HT4) to specific G‐quadruplex structures. Our experimental results indicated that the best ligand San could convert HT4 into antiparallel G‐quadruplex structure completely, followed by Nit, which could transform to mixed‐type or hybrid G‐quadruplex structure partially, whereas Che could only transform to antiparallel G‐quadruplex structure in small quantities. The relative QBAs' inducing abilities as indicated by the CD data are in the order of San>Nit>Che. Further investigation revealed that the G‐quadruplex structures from HT4 induced by QBAs are of intramolecular motif. And only sequences with certain length could be induced by QBAs because of their positive charges which could not attract short chain DNA molecules to close to each other and form intermolecular G‐quadruplex. In addition, the factors that affect the interaction between HT4 and QBAs were discussed. It is proposed that the thickness of the molecular frame and the steric hindrance are the primary reasons why the subtle differences in QBAs' structure lead to their remarkable differences in inducing the formation of the G‐quadruplex structures.  相似文献   

19.
Herein we report on the synthesis and DNA binding properties of a new class of water soluble oxazole-based peptide macrocycles that bind selectively to quadruplex DNA, with no detectable binding to duplex DNA. We have recently identified one quadruplex in the proto-oncogene c-kit that is suspected to act as a regulatory element for the expression of the c-kit gene. Here we provide the first example of a ligand binding to and stabilizing the c-kit quadruplex. Moreover, we show that these macrocycles show a preference for the c-kit quadruplex as compared to the human telomeric quadruplex.  相似文献   

20.
Whereas most conventional DNA probes are flat disklike aromatic molecules, we explored the possibility of developing quadruplex sensors with nonplanar conformations, in particular, the propeller‐shaped tetraphenylethene (TPE) salts with aggregation‐induced emission (AIE) characteristics. 1,1,2,2‐Tetrakis[4‐(2‐triethylammonioethoxy)phenyl]ethene tetrabromide (TPE‐ 1 ) was found to show a specific affinity to a particular quadruplex structure formed by a human telomeric DNA strand in the presence of K+ ions, as indicated by the enhanced and bathochromically shifted emission of the AIE fluorogen. Steady‐state and time‐resolved spectral analyses revealed that the specific binding stems from a structural matching between the AIE fluorogen and the DNA strand in the folding process. Computational modeling suggests that the AIE molecule docks on the grooves of the quadruplex surface with the aid of electrostatic attraction. The binding preference of TPE‐ 1 enables it to serve as a bioprobe for direct monitoring of cation‐driven conformational transitions between the quadruplexes of various conformations, a job unachievable by the traditional G‐quadruplex biosensors. Methyl thiazolyl tetrazolium (MTT) assays reveal that TPE‐ 1 is cytocompatible, posing no toxicity to living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号