首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New Agn subset C2-R-C2 supersetAgn (R = p-, m-, o-C6H4; n = 4, 5) supramolecular synthons have been explored in the coordination network assembly of silver(I) complexes of the isomeric phenylenediethynides. An unprecedented mu5-eta1-coordination mode for the ethynide moiety and a mixed mu4,mu5-coordination mode for the o-phenylenediethynide group are observed, providing a rationale for the abundant occurrence of C2@Agn (n 相似文献   

2.
Five novel lanthanide complexes with the formulas [Nd(bta)(H2O)2.4.35H2O]n(1), [Sm(bta)(H2O)2.4.5H2O]n (2), [Eu(bta)(H2O).1.48H2O]n (3), [Tb(bta)(H2O).1.31H2O]n (4), and [Yb(bta)(H2O).H2O]n (5) (H3bta = 1,3,5-benzenetriacetic acid) have been prepared by using the corresponding lanthanide salt and H3bta. The results of an X-ray crystallographic analysis revealed that all the complexes have three-dimensional channel-like structures, in which the bta3- ligands adopt different coordination modes: monodentate and mu2-eta2:eta1-bridging coordination modes in 1, 2, and 5 and mu2-eta1:eta1-bridging and mu2-eta2:eta1-bridging coordination modes in 3 and 4, respectively. Complexes 1 and 2, as well as 3 and 4, are isostructural, respectively, in which all the Ln(III) (Ln = Nd, Sm, Eu, and Tb) atoms are nine-coordinated, while the Yb(III) atoms in complex 5 are eight-coordinated. Both complexes 3 and 4 showed strong luminescence upon excitation, and their luminescence decay curves fit well with single exponential decays of which the lifetime is 0.45 ms for 3 and 1.0 ms for 4. The magnetic properties of the complexes were investigated in the temperature range of 1.8-300 K.  相似文献   

3.
Hou H  Li L  Li G  Fan Y  Zhu Y 《Inorganic chemistry》2003,42(11):3501-3508
Using FcCOONa (Fc = (eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) as starting material, we obtained an unprecedented metal-organic coordination polymer containing ferrocenecarboxylate components [[Pb(2)(FcCOO)(eta(2)-FcCOO)(mu(2)-eta(2)-FcCOO)(mu(3)-eta(2)-FcCOO)(CH(3)OH)].1.5CH(3)OH.H(2)O](n) (1), tetramer [Zn(4)(mu(2)-FcCOO)(6)(mu(4)-O)] (2), and coordination polymers [Pb(FcCOO)(mu(2)-FcCOO)(bpe)](n) (3) (bpe = 1,2-bis(4-pyridyl)ethene), [[Zn(FcCOO)(2)(bpt)].2.5H(2)O](n) (4) (bpt = N,N'-bis(3-pyridylmethyl)thiourea), and [Zn(FcCOO)(eta(2)-FcCOO)(bbp)](n) (5) (bbp = 4,4'-trimethylene-dipyridine). Compounds 1 and 2 are formed by ferrocenecarboxylate units coordinating with Pb(II) or Zn(II). In polymer 1, ferrocenecarboxylate units have four kinds of coordinate modes; just these novel coordinate modes lead to the unprecedented one-dimensional polymer where two kinds of rhomboids are arranged alternatively along the chain. Compound 2 is a tetramer, in which a distinct connectivity of the six ferrocene units is established through the four Zn atoms. Compounds 3-5 are obtained by organic ligands bridging Pb(II) or Zn(II), leading to a new type of metal-organic coordination polymer.  相似文献   

4.
Seven new d10 metal coordination polymers with isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole ligands, [Zn2 L2(1,2-BDC)(H2O)]n ( 1), {[Cd2(H L)2(1,2-BDC)2] x H2O}n ( 2), [Cd(H L)(1,2-BDC)(H2O)]n (3), [Zn(H L)(1,3-BDC)(H2O) x 3H2O]n ( 4), [Cd2 L2(1,3-BDC)(H2O)]n (5), [Zn(H L)2(1,4-BDC)]n ( 6) and [Cd(H L)2(1,4-BDC)]n (7) (BDC = benzenedicarboxylate, H L = 3-(2-pyridyl)pyrazole), have been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single-crystal X-ray analyses reveal that each complex takes a different one-dimensional (1D) chain structure. In 1-7, the BDCs act as bridging ligands, exhibiting rich coordination modes to link metal ions. The three BDC isomers exhibit different coordination modes: micro(1)-eta(1):eta(1)/micro(3)-eta(2):eta(1), micro(3)-eta(1):eta(2)/micro(3)-eta(2):eta(1), micro(2)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) for 1,2-BDC, micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(0)/micro(2)-eta(2):eta(1) for 1,3-BDC, and micro(1)-eta(1):eta(0)/micro(1)-eta(0):eta(1), micro(1)-eta(1):eta(0)/micro(1)-eta(1):eta(0) and micro(1)-eta(1):eta(1)/micro(1)-eta(1):eta(1) for 1,4-BDC, respectively. In these complexes, H acts as a simple bidentate chelate ligand (in 2, 3, 4, 6 and 7), similar to 2,2'-bipyridine, or as a tridentate chelate-bridging ligand (in 1 and 5) via deprotonation of the pyrazolyl NH group and coordination of the pyrazolyl N atom to a second metal ion. The structural differences indicate that the backbone of such dicarboxylate ligands plays an important role in governing the structures of such metal-organic coordination architectures, and the chelating bipyridyl-like ligand H leads to the formation of these coordination polymers with one-dimensional structures by occupying the coordination sites of metal ions. Moreover, the photoluminescent properties of complexes were also studied in the solid-state at room temperature.  相似文献   

5.
A one-pot transformation of bis(2-isocyano-3-methylphenyl)ethane affords gram quantities of 8,16,24,32-tetraisocyano[2.2.2.2]metacyclophane ( 3). The solid state structure of 3 is remarkably close to the lowest energy conformation found on the potential energy landscape for 3 by DFT. In solution, the structure of metacyclophane 3 is mobile but can be locked in a rectangular gauche- anti- gauche- anti conformation by coordination of the isocyanide substituents to the [W(CO) 5] units to give [M] 4(mu 4-eta (1):eta (1):eta (1):eta (1)- 3) ( 5). The tetranuclear [M] 4(mu 4-eta (1):eta (1):eta (1):eta (1)- 3) motif featured in crystallographically characterized 5 may be present in several insoluble complexes of 3 previously described as mononuclear eta (4) species. A self-assembled monolayer of metacyclophane 3 is formed upon exposing a solution of 3 to the gold(111) surface with no precautions to exclude air or light. The monolayer nature of the film was confirmed by optical ellipsometry. The isocyanide stretching band for 3 shifts from 2119 cm (-1) in solution to 2175 cm (-1) upon chemisorption to metallic gold. The FTIR spectrum of the film indicates interaction of 3 with the gold surface via all four of its isocyanide anchors. No gold-facilitated oxidation of the -NC junctions was detected under ambient conditions. The energy cost associated with accessing the conformations of 3 suitable for mu 4-eta (1):eta (1):eta (1):eta (1) interaction of the molecule with the Au(111) surface is under 8 kcal/mol, a value that can be easily offset by formation of a gold-isocyanide bond. Two different mu 4-eta (1):eta (1):eta (1):eta (1) coordination arrangements of 3 with respect to gold atoms on the (111) face of the fcc Au lattice are suggested.  相似文献   

6.
Zang SQ  Mak TC 《Inorganic chemistry》2008,47(16):7094-7105
Five new ligands bearing terminal ethynide moieties attached via pendant arms to a naphthyl skeleton have been used in the synthesis of eight silver(I) complexes. In these compounds, the invariable appearance of the mu 4 and mu 5 ligation modes of the ethynide moiety reaffirms the general utility of the silver-ethynide supramolecular synthons R-CC supersetAg n and Ag n subsetCC-R-CC supersetAg n ( n = 4, 5) in coordination network assembly, even when the R group is conformationally flexible. Besides the silver-ethynyl and silver-aromatic interactions, several unconventional intermolecular interactions (argentophilicity, anion-pi, C-H...pi, and CN...pi) also make their appearance.  相似文献   

7.
A new Cd(II) complex [Cd3(L)3(mu3-CO3)](ClO4)4.2CH3CN (1) with two-dimensional (2D) network structure was obtained by reaction of an imidazole-containing tripodal polyamine ligand N1-(2-aminoethyl)-N1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(ClO4)2.6H2O at pH 9.0 in air. The carbonate anions (CO3(2-)) are from the hydration of the atmospheric carbon dioxide, which is the same as in the previously reported Cu(II) complex [Cu3(L)3(mu3-CO3)](ClO4)4.3CH3CN (2). However, the coordination mode of CO3(2-) in 1 is mu3-eta2:eta2:eta2 while the one in 2 is mu3-eta1:eta1:eta1. One-dimensional (1D) chain Cd(II) and Cu(II) complexes [Cd(L)Cl]ClO4.H2O (3) and [Cu(L)(H2O)](ClO4)2 (4) without CO3(2-) were prepared by a similar method as that for 1 and 2 except for the different reaction pH, namely, 3 and 4 were obtained at pH 7 while 1 and 2 were obtained at pH 9. In addition, when Cu(NO3)2 was used to react with L at pH 9, a unique 1D double-stranded helical chain complex [Cu(L)Cl]NO3.1.25H2O (5) was obtained. The results revealed that the reaction pH and the counteranion have great impact on the carbon dioxide absorption and hydration as well as on the assembling and structure of the complexes. The magnetic property of complex 2 was investigated in the temperature range of 1.8-300 K, and weak ferromagnetic coupling among the mu3-eta1:eta1:eta1-CO3(2-) bridged Cu(II) atoms was observed.  相似文献   

8.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

9.
We have established cation/anion coupling reactions between the tropylium ligand in [M(eta7-C7H7)(CO)3]+ (M = Cr, W) and the reductively activated eta4-benzene ligand in [Mn(eta4-C6H6)(CO)3]- (3-) to form [M(CO)3(mu2-eta6:eta5-C7H7-C6H6)Mn(CO)3]; [Cr(CO)3(mu2-eta6:eta5-C7H7-C6H6)Mn(CO)3] can be further reduced to [Cr(CO)3(mu2-eta5:eta4-C7H7-C6H6)Mn(CO)3]2-, in which the tropylium and benzene ligands have undergone a [2 + 2] cross coupling reaction.  相似文献   

10.
Treatment of Ba[N(SiMe3)2]2(THF)2 with 2 equiv of dimethylaminotetrazole or diisopropylaminotetrazole and 1 equiv of 18-crown-6 afforded Ba[CN4(NMe2)]2(18-crown-6) (87%) and Ba[CN4(NiPr2)]2(18-crown-6) (79%) as colorless crystalline solids. Ba[CN4(NMe2)]2(18-crown-6) contains two 1,2-eta2-tetrazolato ligands and one eta6-18-crown-6 ligand. The molecular structure of Ba[CN4(NiPr2)]2(18-crown-6) is similar to that of Ba[CN4(NMe2)]2(18-crown-6), except that the tetrazolato ligands exhibit the isomeric 2,3-eta2-coordination mode and the tetrazolato ligand CN4 cores are bent significantly toward the 18-crown-6 ligands. Molecular orbital calculations were carried out on the model complexes Ba(azolate)2(18-crown-6) (azolate = 1,2-eta2-CHN4, 2,3-eta2-CHN4, and eta2-N5) and demonstrate that the ligand coordination modes are influenced by intramolecular interactions between filled nitrogen orbitals on the azolato ligands and empty C-H sigma* orbitals on the 18-crown-6 ligands.  相似文献   

11.
The reaction of Ir4(CO)8(PMe3)4 with excess C60 in refluxing 1,2-dichlorobenzene, followed by treatment by CNR (R = CH2C6H5) at 70 degrees C, affords a fullerene-metal sandwich complex Ir4(CO)3(mu4-CH)(PMe3)2(mu-PMe2)(CNR)(mu-eta2,eta2-C60)(mu4-eta1,eta1,eta2,eta2-C60) (1), which exhibits an interesting structural feature of two metal atoms bridging the two C60 centers as well as the first example of a mu4-eta1,eta1,eta2,eta2-C60 bonding mode. Compound 1 has been characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction study. A cyclic voltammetry study reveals strong electronic communication between the two C60 centers in 1, which is due to the presence of a wide channel of two metal centers between the two C60 cages for efficient electronic interaction.  相似文献   

12.
Exposure of the dinuclear hydroxo complex {[La(tpen)(mu-OH)]2(mu-eta1:eta1OTf)}OTf3 to air results in the immediate uptake of atmospheric CO2 affording an unusual hexanuclear lanthanum carbonato complex in which the carbonate anions are ligated in a mu3-eta1:eta1:eta2 and mu3-eta1:eta2:eta2 fashion.  相似文献   

13.
Two haptotropic isomers of [Pd(3)(mu(3)-DMVC)(2)(CH(3)CN)(2)][BF(4)](2) (DMVC = 1,2-di-(E)-carbomethoxyvinylcyclopentene) were structurally determined by X-ray crystallographic analyses; a monoclinic crystal contained a symmetric sandwich complex (mu(3)-eta(2):eta(2):eta(2)-coordination of DMVC ligands) and a triclinic crystal contained an unsymmetric sandwich complex (mu(3)-eta(2):eta(3):eta(1)-coordination of DMVC ligands), where the latter are connected to each other by C-HO hydrogen bonds.  相似文献   

14.
Reaction of Rh(6)(CO)(9)(dppm)(2)(mu(3)-eta(2),eta(2),eta(2)-C(60)) (1) with C(60) in refluxing chlorobenzene followed by treatment with CNR (R = CH(2)C(6)H(5)) at room temperature affords the first fullerene-metal sandwich complex Rh(6)(CO)(5)(dppm)(2)(CNR)(mu(3)-eta(2),eta(2),eta(2)-C(60))(2) (2). Compound 2 has been characterized by an X-ray diffraction study. Electrochemical study of 2 reveals six well-separated reversible redox couples localized at C(60) cages due to a strong electronic communication between the two C(60) centers via the Rh(6) cluster spacer.  相似文献   

15.
The treatment of N,N'-di(ortho-fluorophenyl)formamidine (HFPhF) in tetrahydrofuran with equimolar amounts of n-butyllithium, sodium bis(trimethylsilyl)amide or potassium bis(trimethylsilyl)amide affords the colourless crystalline formamidinate complexes [Li(FPhF)(thf)] (1), [Na(FPhF)(thf)] (2) and [K(FPhF)] (5). Low-temperature preparation of 2 in diethyl ether yields the Et(2)O adduct [Na(FPhF)(Et(2)O)] (3). At ambient temperature the sodium fluoride inclusion complex [Na(3)(FPhF)(3)(Et(2)O)(NaF)] (4) is also formed. Spectroscopic ((1)H, (13)C and (19)F((1)H) NMR) data for 1-5, microanalytical analyses for compounds 1, 2 and 5 and X-ray structure determinations for 1, 3-5 confirm the formulae of these species. In the solid-state, 1 and 3 possess a dimeric nature in which the formamidinate ligands coordinate through mu(2):eta(2):eta(1) (1) and mu(2):eta(2):eta(2) (3) binding modes. These are enabled by partial ortho-fluoro donation. Compound 4, which is also dimeric, contains two trisodium tris(formamidinate) units that comprise mu(2):eta(2):eta(2)-FPhF ligands, a bridging diethyl ether moiety and an unprecedented mu(3):eta(2):eta(2):eta(2)-formamidinate donor. Together, these trinuclear units encapsulate two sodium fluoride units by eta(2)-N,N-formamidinate chelation of the sodium cations (thereby creating further mu(3):eta(2):eta(2):eta(2)-bound formamidinates) and fluoride-sodium interactions. Compound 5 extends the coordinative versatility of FPhF to mu(2):eta(4):eta(3) coordination by the generation of K(2)(mu(2):eta(4):eta(3)-FPhF)(2) units that exhibit eta(2)-arene interactions. Macromolecularly, the overlaying of these units affords a polymeric solvent-free structure that incites coordination of the FPhF ligands to metal atoms above and below the K(2)(FPhF)(2) plane. Overall, this generates a remarkable mu(4):eta(4):eta(3):eta(2):eta(1)-amidinate binding mode that incorporates both bridging and terminal fluorine donors. Compounds 1-5 are the first non-chromium complexes of N,N'-di(ortho-fluorophenyl)formamidinate.  相似文献   

16.
Self-assembled monolayers (SAMs) of a mu 3-eta 2:eta 2:eta 2-C60 triosmium cluster complex Os3(CO)8(CN(CH2)3Si(OEt)3)(mu 3-eta 2:eta 2:eta 2-C60) (2) on ITO or Au surface exhibit ideal, well-defined electrochemical responses and remarkable electrochemical stability being reducible up to tetranionic species in their cyclic voltammograms.  相似文献   

17.
A remarkable cluster-cluster interaction is operative in dimers of delocalized Ru3O(OAc)5(py)2 clusters with ortho-metallated 2,2'-bipyrimidine (bpym) in an unprecedented mu4-eta1(C),eta1(C),eta2(N,N),eta2(N,N) bonding mode; interconversion of the dimeric species [{Ru3O(OAc)5(py)2}2(micro4-bpym)]n+ (n = 0, 1 or 2) with different charges is attainable by chemical oxidation or reduction.  相似文献   

18.
A series of group 13 main group complexes with pi,sigma-type bonding interaction of the formula [{(eta (5)-RC 2B 9H 9)(CH 2)(eta (1)-NMe 2)}MMe] (M = Al, R = H 5, Me 6; Ga, R = H 7, Me 8; In, R = H 9, Me 10) was produced by the reaction of group 13 metal alkyls (MMe 3; M = Al, Ga, In) with the dicarbollylamine ligands, nido-8-R-7,8-C 2B 9H 10-7-(CH 2)NHMe 2 (R = H 1, Me 2). The reactions of 1 and 2 with AlMe 3 in toluene initially afforded tetra-coordinated aluminum complexes with sigma,sigma-type bonding interaction, [{(eta (1)-RC 2B 9H 10)(CH 2)(eta (1)-NMe 2)}AlMe 2] (R = H 3, Me 4), which readily underwent further methane elimination to yield the corresponding constrained geometry complexes (CGCs, 5 and 6) of aluminum with pi,sigma-bonding interaction. However, the reactions between 1 and 2 and MMe 3 (M = Ga, In) in toluene produced gallium and indium pi,sigma-CGCs of 7 and 10 directly, not proceeding through sigma,sigma-intermediates. The structures of group 13 metal CGCs were established by X-ray diffraction studies of 5, 6, and 8, which authenticated a characteristic eta (5):eta (1)-coordination mode of the dicarbollylamino ligand to the group 13 metals. A similar pi,sigma-bonding interaction was also established in ethylene-bridged dicarbollylethylamine series. Thus, aluminum pi,sigma-CGCs of dicarbollylethylamine, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe] (R = H 17, Me 18), were prepared by the trans-metalation of the [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}Ti(NMe 2) 2] (R = H 15, Me 16) with AlMe 3. However, only sigma,sigma-bonded complexes of the formula [{(eta (1)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe 2] (R = H 13, Me 14) were isolated by the reaction between [ nido-7-8-R-7,8-C 2B 9H 10-(CH 2) 2HNBz 2] (R = H 11, Me 12) and AlMe 3. When methane-elimination reactions between metal alkyls and dicarbollylamines were carried out with either the gallium atom or monobenzyl aminoethyl tethered ligands, [ nido-7-H 2NBz(CH 2) 2-8-R-7,8-C 2B 9H 10] (R = H 21, Me 22), desired pi,sigma-CGCs, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}GaMe] (R = H 19, Me 20) or [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NHBz)}AlMe] (R = H 23, Me 24), were generated, respectively. DFT calculation on 5 provides evidence of existence of pi,sigma-bonding of dicarbollylamine ligand to the aluminum atom: pi-bonding interaction of a dicarbollyl unit becomes intensified in the presence of a weak sigma-bonding amine-tethered group. Furthermore, preference for the formation of pi,sigma-bonding was predicted by optimizing a reaction profile including sigma,sigma- and pi,sigma-structures as well as transition state structures for each methylene- and ethylene-spaced ligand system, 3-5 and 14- 18, to reveal that pi,sigma-bonding interaction is more favorable in the case of a methylene-tethered ligand system.  相似文献   

19.
Heating a mixture of Ir(4)(CO)(9)(PPh(3))(3) (1) and 2 equiv of C(60) in refluxing chlorobenzene (CB) affords a "butterfly" tetrairidium-C(60) complex Ir(4)(CO)(6){mu(3)-kappa(3)-PPh(2)(o-C(6)H(4))P(o-C(6)H(4))PPh(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (3, 36%). Brief thermolysis of 1 in refluxing chlorobenzene (CB) gives a "butterfly" complex Ir(4)(CO)(8){mu-k(2)-PPh(2)(o-C(6)H(4))PPh}{mu(3)-PPh(2)(eta(1):eta(2)-o-C(6)H(4))} (2, 64%) that is both ortho-phosphorylated and ortho-metalated. Interestingly, reaction of 2 with 2 equiv of C(60) in refluxing CB produces 3 (41%) by C(60)-assisted ortho-phosphorylation, indicating that 2 is the reaction intermediate for the final product 3. On the other hand, reaction of Ir(4)(CO)(8)(PMe(3))(4) (4) with excess (4 equiv) C(60) in refluxing 1,2-dichlorobenzene, followed by treatment with CNCH(2)Ph at 70 degrees C, affords a square-planar complex with two C(60) ligands and a face-capping methylidyne ligand, Ir(4)(CO)(3)(mu(4)-CH)(PMe(3))(2)(mu-PMe(2))(CNCH(2)Ph)(mu-eta(2):eta(2)-C(60))(mu(4)-eta(1):eta(1):eta(2):eta(2)-C(60)) (5, 13%) as the major product. Compounds 2, 3, and 5 have been characterized by spectroscopic and microanalytical methods, as well as by single-crystal X-ray diffraction studies. Cyclic voltammetry has been used to examine the electrochemical properties of 2, 3, 5, and a related known "butterfly" complex Ir(4)(CO)(6)(mu-CO){mu(3)-k(2)-PPh(2)(o-C(6)H(4))P(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (6). These cyclic voltammetry data suggest that a C(60)-mediated electron transfer to the iridium cluster center takes place for the species 3(3)(-) and 6(2)(-) in compounds 3 and 6. The cyclic voltammogram of 5 exhibits six well-separated reversible, one-electron redox waves due to the strong electronic communication between two C(60) cages through a tetrairidium metal cluster spacer. The electrochemical properties of 3, 5, and 6 have been rationalized by molecular orbital calculations using density functional theory and by charge distribution studies employing the Mulliken and Hirshfeld population analyses.  相似文献   

20.
Dirhodium amido complexes [(Cp*Rh)2(mu2-NHPh)(mu2-X)] (X = NHPh (2), Cl (3), OMe (4); Cp* = eta5-C5Me5) were prepared by chloride displacement of [Cp*Rh(mu2-Cl)]2 (1) and have been used as precursors to a dirhodium imido species [Cp*Rh(mu2-NPh)RhCp*]. The imido species can be trapped by PMe3 to give the adduct [Cp*Rh(mu2-NPh)Rh(PMe3)Cp*] (5) and undergoes a formal [2 + 2] cycloaddition reaction with unactivated alkynes to give the azametallacycles [Cp*Rh(mu2-eta2:eta3-R1CCR2NPh)RhCp*] (R1 = R2 = Ph (6a), R1 = H, R2 = t-Bu (6b), R1 = H, R2 = p-tol (6c)). Isolation of a relevant unsaturated imido complex [Cp*Rh(mu2-NAr)RhCp*] (7) was achieved by the use of a sterically hindered LiNHAr (Ar = 2,6-diisopropylphenyl) reagent in a metathesis reaction with 1. X-ray structures of 2, 6a, 7 and the terminal isocyanide adduct [Cp*Rh(mu2-NAr)Rh(t-BuNC)Cp*] (8) are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号