首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and flow characteristics of fluids within carbon nanotube (CNT) is dictated by the interaction of fluid molecules within the nanocavity of CNT. Therefore, in the present study, dispersion corrected density functional theory has been used to investigate the structure and interaction of polar and nonpolar molecules within CNT. The present study shows that there is profound effect on the interaction due to dispersion. The interaction energy of the confined water was found to be reduced with increasing distance of the water molecule from the wall of the CNT. The water is preferentially adsorbed over methane due to stronger interaction with CNT over methane. Further, water is preferentially adsorbed over methanol molecule when interaction is calculated without dispersion but after inclusion of dispersion interaction, the calculated results show that the methanol–CNT interaction is stronger than that of water molecule and hence preferentially adsorbed within the CNT as revealed from MD simulation. The present calculation reveals that that the effect of CNT confinement on the IR spectra of the single file water is quite considerable compared to the IR spectra of tetrahedral bulk water cluster. Therefore, the present results might be useful for the separation of polar molecule from nonpolar molecule during fabrication of CNT‐based filter and purification system.  相似文献   

2.
Differential wetting of pristine and ozonized carbon nanotubes has been studied using solvents like acetonitrile and dichloromethane in comparison to the well-known wetting behavior of water. Based on their unique structural and physical properties, functionalized CNT substrates have been used due to the fact that independent variation in molecular as well as electronic properties could be controlled by understanding the wetting of these liquids on carbon nanotubes (CNTs), both pristine as well as ozone treated. The sensitivity of the wetting behavior with respect to molecular interactions has been investigated using contact angle measurements while Raman and XPS studies unravel the differential wetting behavior. Charge-transfer between adsorbed molecules and CNTs has been identified to play a crucial role in determining the interfacial energies of these two liquids, especially in the case of acetonitrile. Ozone treatment has been observed to affect the surface properties of pristine CNTs along with a concomitant change in the wetting dynamics.  相似文献   

3.
Glassy-carbon electrodes (GCEs) are modified with preoxidized multiwalled carbon nanotubes (CNTs). According to the data of atomic force microscopy, the layers of CNTs on GCEs possess a homogeneous nanostructurized surface. The voltammetric properties of a GCE/CNT depend on the modifier load. Guanine and deoxyguanosine monophosphate are strongly adsorbed on GCE/CNT and oxidized at +690 and +930 mV (pH 7.0), respectively. The oxidation current of guanine DNA nucleotides adsorbed on a GCE/CNT is significantly higher for the thermally denaturated biopolymer than for the native one. Our results are of interest for the development of sensors based on the electrochemical properties of nucleic acids.  相似文献   

4.
聚乙烯链在碳纳米管侧壁吸附的动力学模拟研究   总被引:2,自引:2,他引:0  
利用经典的分子动力学模拟方法对聚乙烯(PE)分子在两种不同类型的碳纳米管(CNT)中的吸附进行了研究. 计算了两者之间的扩散系数和相互作用能; 利用PE链自身的扭转角分布和取向参数对PE链构象进行了分析. 结果表明, PE链可以在CNT上很好的吸附, 且PE的构象和吸附位置主要与温度和CNT的半径有关, 与管的类型关系不大.  相似文献   

5.
Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation–reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.  相似文献   

6.
Surface enhanced Raman spectroscopy (SERS) allows the detection of trace quantities of molecular species adsorbed onto a surface. The potential use of silver colloids as substrates for analytical SERS measurements is demonstrated. Detection limits and other analytical figures of merit for pyridine, p-aminobenzoic acid and p-nitrobenzoic acid are presented.  相似文献   

7.
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well‐defined structures of polycaprolactone (PCL) and PCL‐ carbon nanotube (PCL‐CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering.

  相似文献   


8.
Transparent carbon nanotube (CNT) coatings were deposited on boro-silicate glass substrates by dip-coating. Ultraviolet-visible (UV) spectra, surface resistance measurement, and the wettability tests were used to investigate the optical transmittance and electrical properties of these CNT coatings. The changes in electrical and optical properties of these coatings were observed to be functions of the number of dip-coating cycles. The surface resistance of the CNT coated substrates decreased dramatically as the number of dip-coatings was increased, whereas the increases in the CNT layer thickness beyond that for the first dipping cycle had little effect on the transparent-properties. Static contact angle measurements proved to be an effective means for evaluating the surface morphology of CNT coatings. The interfacial durability of the CNT coatings on a glass substrate was much better than that of ITO coatings over the temperature range from -150°C to +150°C.  相似文献   

9.
Adsorption properties of dibenzothiophene (DBT) on a CNT (carbon nanotube) support as well as on CoMoS/CNT and CoMoO/CNT catalysts have been studied. Consecutive desorption of adsorbates was measured by TGA. The commonly used carriers AC (activated carbon), γ-Al2O3, and their supported catalysts (CoMoO/AC, CoMoS/AC, CoMoO/γ-Al2O3, CoMoS/γ-Al2O3) were also subjected to analysis for comparison. The acidic properties of the samples were characterized using the NH3-TPD technique.Correlation between the adsorption of DBT and the acidic properties of the catalysts has been established.It was found that the Co-Mo catalysts in the sulfide state adsorbed much more DBT molecules than the corresponding Co-Mo catalysts in the oxide state. The CoMoS/CNT catalyst exhibited very high HDS activity and selectivity, as compared with the CoMoS/γ-Al2O3 catalysts. Based on the BET data and the high hydrogenolysis/hydrogenation selectivity of the CoMoS/CNT, it was deduced that more than 90% of the DBT molecules adsorbed on the CoMoS/CNT with an end-on mode, and the surface of the CoMoS/CNT catalyst was almost fully covered with DBT molecules. Although the AC support had very high surface area and high loading ability, the AC supported CoMoS catalyst showed lower HDS activity,as compared with the CoMoS/γ-Al2O3 catalyst.  相似文献   

10.
Electrical sensitivity of a boron carbon nanotube (B2CNT) was examined toward carbon monoxide (CO) molecule by using dispersion-corrected density functional theory calculations. It was found that CO is weakly adsorbed on the tube, releasing energy of 3.5–4.1 kcal/mol, and electronic properties of the tube are not significantly changed. To overcome this problem, boron and carbon atoms of the tube were substituted by aluminum and silicon atoms, respectively. Although both Al and Si doping make the tube more reactive and sensitive to CO, Si doping seems to be a better strategy to manufacture CO chemical sensors due to the higher sensitivity without deformation of nanotube structure after adsorption procedure. Moreover, it was shown that some interference molecules such as H2O, H2S and NH3 cannot significantly change the electronic properties of B2CNT. Therefore, the Si-doped tube might convert the presence of CO molecules to electrical signal.  相似文献   

11.
Performance of carbon nanotube(CNT) and their attached metal oxides(manganese oxide(MnO) and cadmium dioxide(CdO2)) structures as anode electrodes in lithium-ion battery(LIB) and potassium-ion battery(KIB) are investigated. The Gibbs free energy of adsorption of Li and K atoms/ions on surfaces of CNT(8, 0), CNT(8, 0)-MnO and CNT(8, 0)-CdO2 are calculated. The cell voltages(Vcell) of Li and K atoms/ions adsorption on studied surfaces are examined. The Vcell of LIBs with metal-oxides attached to CNT(8, 0) as anode electrodes are higher than those KIBs. The adsorbed metal oxides(MnO and CdO2) on CNT(8, 0) increased the charges, electronic conductivity and Vcell of LIB and KIB, efficiently. The CNT(8, 0)-CdO2 as anode electrodes in LIB and KIB is proposed.  相似文献   

12.
Networks of different carbon nanotube (CNT) materials were investigated as resistive gas sensors for NO2 detection. Sensor films were fabricated by airbrushing dispersions of double-walled and multi-walled CNTs (DWNTs and MWNTs, respectively) on alumina substrates. Sensors were characterized by resistance measurements from 25 to 250 °C in air atmosphere in order to find the optimum detection temperature. Our results indicate that CNT networks were sensitive to NO2 concentrations as low as 0.1 ppm. All tested sensors provided significantly lower response to interfering gases such as H2, NH3, toluene and octane. We demonstrate that the measured sensitivity upon exposure to NO2 strongly depends on the employed CNT material. The highest sensitivity values were obtained at temperatures ranging between 100 and 200 °C. The best sensor performance, in terms of recovery time, was however achieved at 250 °C. Issues related to the gas detection mechanisms, as well as to CNT network thermal stability in detection experiments performed in air at high operation temperatures are also discussed.  相似文献   

13.
We describe here a new approach to the synthesis of size-controllable polypyrrole/carbon nanotube (CNT) nanocables by in situ chemical oxidative polymerization directed by the cationic surfactant cetyltrimethylammonium bromide (CTAB) or the nonionic surfactant polyethylene glycol mono-p-nonylphenyl ether (Opi-10). When carbon nanotubes are dispersed in a solution containing a certain concentration of CTAB or Opi-10, the surfactant molecules are adsorbed and arranged regularly on the CNT surfaces. On addition of pyrrole, some of the monomer is adsorbed at the surface of CNTs and/or wedged between the arranged CTAB or Opi-10 molecules. When ammonium persulfate (APS) is added, pyrrole is polymerized in situ at the surfaces of the CNTs (core layer) and ultimately forms the outer shell of the nanocables. Such polypyrrole/CNT nanocables show enhanced electrical properties; a negative temperature coefficient of resistance at 77-300 K and a negative magnetoresistance at 10-200 K were observed.  相似文献   

14.
A promising electrochemical sensor based nickel‐carbon nanotube (Ni‐CNT) modified on glassy carbon (GC) electrode had been developed and the properties of the modified electrode were characterized by multispectroscopic analysis. The fabricated sensor (GC/Ni‐CNT) electrode was utilized to determine the catecholamines such as epinephrine and dopamine simultaneously. Differential pulse voltammetry and amperometry were used to verify the electrochemical behavior of the studied compounds. The GC/Ni‐CNT based amperometric sensor showed a wide linear range and low detection limit with high analytical sensitivity of 8.31 and 6.61 μA μM?1 for EP and DA, respectively which demonstrates better characteristics compared to other electrodes reported in the literature. Further, no significant change in amperometric current response was observed in presence of biological interference species such as glucose, cysteine, citric acid, uric acid and ascorbic acid in the detection of EP and DA. The utility of this GC/Ni‐CNT electrode was well established for the determination of EP and DA in human urine samples.  相似文献   

15.
A carbon nanotube/poly(ethyl 2-cyanoacrylate) (CNT/PECA) composite electrode was developed for enhanced amperometric detection. The composite electrode was fabricated on the basis of water-vapor-initiated polymerization of a mixture of CNTs and ethyl 2-cyanoacrylate in the bore of a piece of fused silica capillary. The morphology and structure of the composite were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The results indicate that the CNTs were well dispersed and embedded throughout the PECA matrix to form an interconnected CNT network. The analytical performance of this unique CNT-based detector has been demonstrated by separating and detecting six flavones in combination with capillary electrophoresis. The advantages of the CNT/PECA composite detector include lower operating potential, higher sensitivity, low expense of fabrication, satisfactory resistance to surface fouling, and enhanced stability; these properties indicate great promise for a wide range of applications.  相似文献   

16.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   

17.
In order to develop new electronic devices, it is necessary to find innovative solutions to the eco‐sustainability problem of materials as substrates for circuits. We realized a photoresponsive device consisting of a semiconducting polymer film deposited onto optically semitransparent and conductive biodegradable poly(3‐hydroxybutyrate) (PHB)/carbon nanotube (CNT) substrates. The experiments indicated that the PHB‐CNT bionanocomposite substrate behaves as an optical window trapping electric charges produced by the photoexcitation of the semiconducting polymer. Such PHB‐CNT functional substrates are expected to be attractive for eco‐friendly electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 596–602  相似文献   

18.
The addition of central nervous tissues (CNT), such as brain and spinal cord, in the manufacturing of meat products is either forbidden—if the material falls under the legal definition of specified risk material (SRM)—or must be labelled on the packed product. To foster official food control, several CNT detection methods were developed, but only fatty acid patterns as detected by gas chromatography/mass spectrometry (GC/MS) allow the further characterization of the detected CNT as to both the animal species and—surprisingly—the age of the animal from which the CNT was derived in accordance with the legal definition. Complementing a previous report in this journal by Lücker et al. 2010 (doi:) on CNT quantification by GC/MS, we now report results of the validation of this new analytical approach by an externally controlled blind trial elucidating its potential to identify the species and age of the CNT detected. The 72 samples (24 standards of emulsion-type sausage, each heated in three different batches: 75°C, 30 min; 115°C, 25 min; 133°C, 40 min) containing porcine, ovine or bovine muscle tissue and differing amounts of CNT (bovine or ovine brain: 0, 0.1, 0.5, 1.0, 3.0% m/m) were produced externally and provided blind for analyses to our laboratory. In accordance with the previous study, heating had no detectable effect on the GC/MS analysis. Judged by the present sensitivity of this method (cut-off 0.2% CNT), all of the samples containing 0.5% or more CNT (n = 57, 100%) were identified correctly as CNT-positive. The CNT species was identified correctly in 54 samples (94.7%), with three samples of one specific standard (0.5% ovine CNT) falsely classified as bovine CNT. However, the CNT age of these samples was correctly classified (more than 12 months). Overall, 57 samples (100%) were correctly classified as SRM-positive and 15 samples (100%) as SRM-negative. To the best of our knowledge, this is the first time that a legal demand for the (1) detection of traces of a specific tissue in a food matrix, (2) the identification of its taxonomic origin and (3) the classification of its age has been shown to be analytically possible in totally blind samples. The very positive validation results of this externally controlled blind trial recommend the present GC/MS approach for the detection of CNT in meat products as a reference method. However, our results also demonstrate the need for further studies, in particular to increase sensitivity and to conduct ring trials including more than one laboratory.  相似文献   

19.
Density functional theory calculations are used to study the healing process of a defective CNT (i.e. (8,0) CNT) by CO molecules. The healing undergoes three evolutionary steps: 1) the chemisorption of the first CO molecule, 2) the incorporation of the C atom of CO into the CNT, accompanied by the adsorption of the leaving O atom on the CNT surface, 3) the removal of the adsorbed O atom from the CNT surface by a second CO molecule to form CO2 and the perfect CNT. Overall, adsorption of the first CO reveals a barrier of 2.99 kcal mol?1 and is strongly exothermal by 109.11 kcal mol?1, while adsorption of a second CO has an intrinsic barrier of 32.37 kcal mol?1and is exothermal by 62.34 kcal mol?1. In light of the unique conditions of CNT synthesis, that is, high temperatures in a closed container, the healing of the defective CNT could be effective in the presence of CO molecules. Therefore, we propose that among the available CNT synthesis procedures, the good performance of chemical vapor decomposition of CO on metal nanoparticles might be ascribed to the dual role of CO, that is, CO acts both as a carbon source and a defect healer. The present results are expected to help a deeper understanding of CNT growth.  相似文献   

20.
Lee HJ  Kim HS  Kim HO  Koh WG 《Lab on a chip》2011,11(17):2849-2857
This paper describes the development of multi-functional nanofiber scaffolds consisting of multiple layers of nanofiber scaffolds and nanofiber-incorporated poly(ethylene glycol) (PEG) hydrogels. As a proof-of-concept demonstration, we fabricated micropatterned polymeric nanofiber scaffolds that were capable of simultaneously generating cellular micropatterns within a biomimetic environment and detecting cellular metabolic products within well-defined microdomains. To achieve this goal, we designed nanofiber scaffolds with both vertical and lateral microdomains. Vertically heterogeneous structures that were responsible for multi-functionality were realized by preparing double-layered nanofiber scaffolds consisting of an antibody-immobilized bottom layer of nanofibers and an upper layer of bare polystyrene (PS) nanofibers by a two-step sequential electrospinning process. Photopatterning of poly(ethylene glycol) (PEG) hydrogel on the electrospun nanofibers produced laterally heterogeneous micropatterned nanofiber scaffolds made of hydrogel microwells filled with a nanofibrous region, which is capable of generating cell and protein micropatterns due to the different interactions that cells and proteins have with PEG hydrogels and nanofibers. When HepG2 cells were seeded into resultant nanofiber scaffolds, cells selectively adhered within the 200 μm × 200 μm PS fiber microdomain and formed 180.2 ± 6.7 μm spheroids after 5 days of culture in the upper layer. Furthermore, immobilized anti-albumin in the bottom layer detected albumin secreted by micropatterned HepG2 cells with higher sensitivity than flat PS substrates, demonstrating successful accomplishment of dual functions using micropatterned double-layered nanofiber scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号