首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
《Physics letters. A》2020,384(24):126453
In this article, we study the exchange coupling interactions of the equiatomic quaternary Heusler alloy CoFeTiSn, using the two methods: Monte Carlo simulations and the ab-initio method. In a first step, we use the ab-initio calculations to investigate the structural, the electronic and the magnetic properties of this alloy under the GGA method. The analysis of the energy dependence on the lattice parameter a (Å) of the equiatomic quaternary Heusler alloy CoFeTiSn, is discussed for different atomic configurations. The ferromagnetic configuration is found to be the more stable one, with an optimal lattice parameter value 6.00 Å. On the other hand, the electronic structure results show that the compound CoFeTiSn exhibits a half-metallic character and a spin polarization of 100% at the Fermi-level. The total magnetic moment of this alloy is found to be equal to 2.00 μB which follows the Slater Pauling rule. Our results support the half-metallic behavior of the studied material. In order to complete this study, we reported the dependence of the critical transition temperature as a function of the parameter α of the equiatomic quaternary Heusler alloy CoFeTiSn. We showed that the critical temperature increases almost linearly with an increase of the values of the parameter α.  相似文献   

2.
The Ag8SnSe6 argyrodite compound was synthesized by the direct melting of the elementary Ag, Sn and Se high purity grade stoichiometric mixture in a sealed silica ampoule. The prepared polycrystalline material was characterized by the X-ray diffraction (XRD), visible (VIS) and near-infrared (NIR) reflection and photoluminescence (PL) spectroscopy. XRD showed that the Ag8SnSe6 crystallizes in orthorhombic structure, Pmn21 space group with lattice parameters: а = 7.89052(6) Å, b = 7.78976(6) Å, c = 11.02717(8) Å. Photoluminescence spectra of the Ag8SnSe6 polycrystalline wafer show two bands at 1675 nm and 1460 nm. Absorption edge position estimated from optical reflectance spectra is located in the 1413–1540 nm wavelength range.  相似文献   

3.
Cd0.5Mn0.5Te is a semimagnetic semiconductor, which crystallizes in the zinc-blende structure (ZB) and exhibits a magnetic spin glass like transition at 21 K. Under pressure it shows a first-order phase transition around 2.6 GPa to the NaCl like structure. In this work, the pressure cycled method using a Paris–Edinburgh cell up to 8 GPa has been applied to Cd0.5Mn0.5Te samples in order to obtain recovered nanocrystals. The nanoparticles have been characterized by EDX and electron microscopy. The X-ray and electron diffraction results confirmed the existence of nanocrystals in the ZB phase with an average size of 7 nm. Magnetization measurements made in the range of 2–300 K at low field show that the temperature of the magnetic transition decreases when the crystallites’ size is reduced.  相似文献   

4.
First-principles calculations were used to calculate the structural, electronic and half-metallic ferromagnetism of Mn2RuGe1-xSnx (x?=?0, 0.25, 0.50, 0.75, 1) Heusler alloys. The Hg2CuTi-type structure is found to be energetic more than Cu2MnAl-type structure for both Mn2RuGe and Mn2RuSn compounds. The calculated lattice constants for Mn2RuGe and Mn2RuSn are 5.91?Å and 6.17?Å, respectively. The electronic band structures and density of states of Mn2RuGe show a half metallic character with total magnetic moments, 2 μB per formula unit that are in good agreement with Slater-Pauling rule with indirect band gap, 0.31?eV along the direction Γ –X. It is observed that the total magnetic moment per cell increases as Sn concentration increases in the Heusler alloys.  相似文献   

5.
The spin wave spectrum of chemically disordered Pd0.5Fe0.5 has been determined by neutron inelastic scattering. At small wavevectors, the dispersion curve is quadratic and isotropic with a spin wave stiffness constant of 47.9 ± 3.3 THz Å2, at room temperature. There is little sign of the anisotropic behaviour observed in the ordered alloy Pd3Fe.  相似文献   

6.
Polycrystalline (Fe/Pd)n multilayers are grown onto sapphire substrates at room temperature in a UHV system. The number of periods n=40 and the thickness of Pd layers of tPd=4 nm are kept constant, whereas the thickness of the Fe layers is varied from 1.5 to 5 nm. Structural properties are studied by in situ reflection high energy diffraction (RHEED), scanning tunnelling microscopy (STM) and ex situ by X-ray diffraction at small angles and large angles. Analyzing the experimental data using the program SUPREX we obtain interplanar distances of dFe=2.03±0.01 Å for an Fe layer thickness larger than about 2.5 nm as expected for (1 1 0) planes of BCC Fe. For Fe layers with thicknesses less than about 2.5 nm the interplanar distance is dFe=2.1±0.01 Å, which is close to the distance between (1 1 1) planes of FCC Fe with a lattice parameter of a=3.64 Å. Magnetic susceptibility measurements at temperatures between 1.5 and 300 K for (Fe/Pd)n multilayers with FCC Fe yield a magnetic moment per Fe atom of μ=2.7±0.1 μB, which is about 20% larger compared to μ=2.2 μB for BCC Fe. We show that the occurrence of the large magnetic moment originates from FCC Fe being in the high spin (HS) state rather than from polarization effects of Pd at Fe/Pd interfaces.  相似文献   

7.
《Solid State Ionics》2006,177(3-4):237-244
Ongoing studies of the KHSeO4–KH2PO4 system aiming at developing novel proton conducting solids resulted in the new compound K2(HSeO4)1.5(H2PO4)0.5 (dipotassium hydrogenselenate dihydrogenphosphate). The crystals were prepared by a slow evaporation of an aqueous solution at room temperature. The structural properties of the crystals were characterized by single-crystal X-ray analysis: K2(HSeO4)1.5(H2PO4)0.5 (denoted KHSeP) crystallizes in the space group P 1¯ with the lattice parameters: a = 7.417(3) Å, b = 7.668(2) Å, c = 7.744(5) Å, α = 71.59(3)°, β = 87.71(4)° and γ = 86.04(6)°. This structure is characterized by HSeO4 and disordered (HxSe/P)O4 tetrahedra connected to dimers via hydrogen bridges. These dimers are linked and stabilized by additional hydrogen bonds (O–H–O) and hydrogen bridges (O–H…O) to build chains of dimers which are parallel to the [0, 1, 0] direction at the position x = 0.5.The differential scanning calorimetry diagram showed two anomalies at 493 and 563 K. These transitions were also characterized by optical birefringence, impedance and modulus spectroscopy techniques. The conductivity relaxation parameters of the proton conductors in this compound were determined in a wide temperature range. The transport properties in this material are assumed to be due to H+ protons hopping mechanism.  相似文献   

8.
Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni0.5Cu0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni0.5Cu0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni0.5Cu0.5O. The magnetic moments are from Ni 3d states. Ni0.5Zn0.5O and Ni0.5Cd0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni2+ ions is enhanced by the Zn and Cd incorporation. Therefore, Ni0.5Cu0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization.  相似文献   

9.
The nuclear and magnetic structure and the magnetic properties of the polycrystalline double perovskite Sr2MnWO6 have been studied. Rietveld analysis of neutron powder diffraction (NPD) data at T=295 K shows that the sample is tetragonal (space group P42/n, a=8.0119(4) Å, c=8.0141(8) Å). Some additional magnetic diffraction peaks were found in the NPD pattern at 10 K, which can be accounted for by antiferromagnetic ordering of spins at the Mn sites. The magnetic unit cell is doubled in all three unit axes directions (a=b=15.9984(8) Å, c=16.012(2) Å) and the manganese moments are coupled antiferromagnetically along the unit cell axes. The total magnetic moment of Mn2+ is found to be 2.27(7) μB. The antiferromagnetic behaviour was confirmed from magnetisation measurements. The transition from a paramagnetic to an antiferromagnetic state takes place at 13.0±0.1 K.  相似文献   

10.
The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along ГX for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.  相似文献   

11.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

13.
Inelastic neutron scattering measurements on a ferromagnetic Heusler alloy, Pd2MnIn1?xSnx at the composition x = 0.75, have established the spin wave dispersion in the three principal symmetry directions. The results have been interpreted using a simple Heisenberg model in which the exchange constants are of long range, extending beyond 12 Å. The Curie temperature, spin wave stiffness constant and the thermal variation of the magnetisation, calculated using the derived exchange parameters are in close agreement with observation.Anomalies in the spin wave dispersion, which are also present to a lesser degree in Pd2MnSn, have been interpreted as precursor effects associated with the onset of antiferromagnetic ordering, type AF3A, which is the magnetic structure observed in the range 0.2 ? x ? 0.6.  相似文献   

14.
We have measured the low-temperature resistivities of a series of bulk crystalline disordered Ti73−xAl27Snx alloys (x≲5) as well as the sheet resistances of a number of thin ferromagnetic Ni films (≈120 Å thick) sandwiching an ultrathin Ag or Au (≲5 Å) layer. The level of impurities (concentration of Sn in the former case, and thickness of Ag or Au in the latter case) is progressively increased in order to enhance the spin–orbit scattering in a controllable manner. The influence of the spin–orbit scattering on the electron–electron interaction effects is studied from the temperature dependence of resistivities (sheet resistance) at low temperatures. We find that the electron–electron interaction contribution to the resistivities (sheet resistances) increases slightly with increasing spin–orbit scattering. Our observation is discussed in terms of the current theoretical concept for the electron–electron interactions in disordered metals.  相似文献   

15.
Using the electron density functional theory, the electronic structure and magnetic properties of possible contacts on the (001) interface between XYZ and X 2 YZ Heusler alloys (NiMnSb, Co2 MnSi) and III–V semiconductors (InP, GaAs) are studied. It is demonstrated that, in both cases, the high degree of spin polarization is achieved in Ni/P(As) or Co/As contacts. The influence of structure defects located on the surface and interfaces on the spin polarization at the Fermi level is studied. The nature of surface states at the Heusler alloy-semiconductor interface and electron factors that favor preservation or loss of the half-metallic behavior in the contacts are analyzed. Calculations of the local magnetic moments show that the magnetic properties of atoms in the contact are not changed significantly at the interface because of the partial compensation of their coordination by atoms of the semiconductor. The spin polarization can be increased by doping of the X element sublattice.  相似文献   

16.
《Solid State Ionics》2006,177(9-10):901-906
Crystal structure, thermal expansion coefficient, electrical conductivity and cathodic polarization of compositions in the system Sm0.5Sr0.5Co1  xFexO3  δ with 0  x  0.9 were studied as function of Co / Fe ratio and temperature, in air. Two phases, including an Orthorhombic symmetry for 0  x  0.4 and a cubic symmetry for 0.5  x  0.9, were observed in samples of Sm0.5Sr0.5Co1  xFexO3  δ at room temperature. The adjustment of thermal expansion coefficient (TEC) to electrolyte, which is one of the main problems of SSC, could be achieved to lower TEC values with more Fe substitution. High electrical conductivity above 100 S/cm at 800 °C was obtained for all specimens, so they could be good conductors as cathodes of IT-SOFC. The polarization behavior of SSCF as a function of Fe content was evaluated by means of AC impedance using LSGM electrolyte. It was discovered that the Area Specific Resistance (ASR) of SSCF increased as the amount of substitution of Fe for Co increased. When the amount of Fe reached to 0.4, the highest ASR was obtained and then the resistance started decreasing above that. The electrode with a composition of Sm0.5Sr0.5Co0.2Fe0.8O3  δ showed high catalytic activity for oxygen reduction operating at temperature ranging from 700 to 800 °C.  相似文献   

17.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

18.
The microwave dielectric properties of La1?xSmx(Mg0.5Sn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La1?xSmx(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.59 g/cm3, dielectric constant (εr) of 19.9, quality factor (Q×f) of 70,200 GHz, and temperature coefficient of resonant frequency (τf) of ?77 ppm/°C were obtained for La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics that were sintered at 1500 °C for 4 h. The dielectric constant, and τf of La0.97Sm0.03(Mg0.5Sn0.5)O3 ceramics were almost independent with the sintering temperature as the sintering temperature varied from 1450 to 1600 °C.  相似文献   

19.
Half-metallic ferromagnetic full-Heusler alloys containing Co and Mn, having the formula Co2MnZ where Z is a sp element, are among the most studied Heusler alloys due to their stable ferromagnetism and the high Curie temperatures which they present. Using state-of-the-art electronic structure calculations we show that when Mn atoms migrate to sites occupied in the perfect alloys by Co, these Mn atoms have spin moments antiparallel to the other transition metal atoms. The ferrimagnetic compounds, which result from this procedure, keep the half-metallic character of the parent compounds and the large exchange-splitting of the Mn impurities atoms only marginally affects the width of the gap in the minority-spin band. The case of [Co1−xMnx]2MnSi is of particular interest since Mn3Si is known to crystallize in the Heusler L21 lattice structure of Co2MnZ compounds. Robust half-metallic ferrimagnets are highly desirable for realistic applications since they lead to smaller energy losses due to the lower external magnetic fields created with respect to their ferromagnetic counterparts.  相似文献   

20.
We explore the lattice and the electronic band structures matching between the half-metallic Heusler alloys (half-Heusler NiMnSb and full-Heusler Co2MnSi) and several hypothetical non-magnetic Heusler alloys by using first principle calculations. The lattice and band structure matching are almost perfectly satisfied between the two materials of similar crystal structures: (i) NiMnSb and XYSb and (ii) Co2MnSi and X2YSi, where X, Y=Ni or Cu. Owing to the high interface spin scattering asymmetry, these materials are promising to realize a high giant magnetoresistance at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号