首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in zinc-blende (ZB) InxGa1x  N/GaN cylindrical quantum well wires (CQWWs) is investigated using variational procedures. Numerical results show that the ground-state donor binding energy EbEb is highly dependent on the impurity position and the CQWWs structure parameters. The donor binding energy for a shallow donor impurity located at the center of the CQWWs is the largest. As the impurity position changes from the center of the wire to its edge, the donor binding energy gets smaller. Also, we have found that In concentration is a very important value to tailor the system, since the binding energies close to binding energy maxima are strongly dependent on In content.  相似文献   

4.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   

5.
6.
7.
Progress in the first gyrokinetic validation study using KSTAR NBI heated L-mode discharge is reported in this paper. The energy flux levels simulated from gyrokinetic code, CGYRO[J. Candy et al., J. Comput. Phys. 324, 73–93 (2016)] were compared with experimental levels in this study for validation purposes. The linear stability analysis indicates that trapped electron modes (TEM) are the most unstable ion-scale modes at r/a = 0.5. The simulated energy flux was under-predicted compared to the experimental energy flux level within their uncertainties. We also observed that simulated energy flux levels were sensitive to the input parameters related to impurity density profile such as effective charge, Zeff, and inverse gradient scale length of impurity and main ion, a/Lnc and a/Lni, respectively. For the conclusive future validation studies, we identified the Zeff profile, which can give constraints on not only impurity but also main ion profiles, as necessary input.  相似文献   

8.
The formation of the optical polaron and bipolaron in two-dimensional (2D) systems is studied in the intermediate electron–phonon coupling regime. The total energies of the 2D polaron and bipolaron are calculated by using the Buimistrov–Pekar method of canonical transformations. The obtained results are compared with other existing results obtained by using the Feynman path integral method and the modified Lee–Low–Pines unitary transformation method. It is shown that the electron–phonon correlation significantly reduces the total energy of the 2D polaron in comparison with the energy of the strong coupling (adiabatic) polaron. It is found that the polaron formation in 2D systems is possible when the electron–phonon coupling constant α is greater than the critical value αc?2.94, which is much lower than a critical value of the electron–phonon coupling constant α in three-dimensional (3D) systems. The critical values of the Fröhlich coupling constant α and the ratio η=ε/ε0 (where ε and ε0 are the high frequency and static dielectric constants, respectively), which determine the bipolaron stability region in 2D systems, are calculated numerically. It is interesting for application to the layered cuprate superconductors that the (bi)polarons are formed more easily in quasi-2D regions than in the bulk. It is argued that the high-Tc cuprate superconductivity can exist above the bulk superconducting transition temperature Tc as the persisting superfluidity of polaronic (bosonic) Cooper pairs and large bipolarons at quasi-2D grain boundaries or in the CuO2 layers above Tc.  相似文献   

9.
Single quantum dots and other materials exhibit irregular switching between on and off states; these on–off states follow power-law statistics giving rise to 1/f noise. We transfer this phenomenon (also referred to as on–off intermittency) to the generation and recombination (= g–r) process in semiconductor materials. In addition to g–r noise we obtain 1/f noise that can be provided in the form of Hooge's relation. The predicted Hooge coefficient is αH=αXαim whereby αX depends on the parameters of the g–r noise and αim on the parameters of the intermittency. Due to the power-law distribution of the on-times, the coefficient αim shows a smooth dependence on time t. We also suggest an alternative form of Hooge's 1/f noise formula relating the 1/f noise to the number of centers (such as donor or trap atoms) rather than to the number of charge carriers as defined by Hooge.  相似文献   

10.
With the help of the nonequilibrium Green's function technique, we theoretically analyze the thermospin property through a typical T-shaped spin valve with spin-flip scattering in the linear regime. The influences of spin-flip coefficient of interdot λ, spin-flip coefficient of intradot η and interdot hopping coefficient t+δσΔt on thermospin property are discussed. As interdot hopping coefficient t is equal to energy level ε, the spectrum of Gs shows Fano-like effect with ε variation. Antiresonance position of Gs is almost unchanged and its width becomes narrower with ε increasing. Spin thermopower Ss is close to the maximum of the peak and charge thermopower Sc is equal to zero for t=ε. As a result, the pure spin thermopower Ss can be obtained, which means that a pure spin current may be produced by a temperature gradient in our system. It is found that spin figure of merit ZTs can reach a considerable value by adjusting key parameters of the system, such as Δt, β, α, ?. The typical T-shaped spin valve can be treated as a stable thermospin battery which allows to convert the heat energy to spin voltage, thus produces the pure spin current in the device.  相似文献   

11.
12.
13.
《Physics letters. A》2019,383(17):2114-2119
We provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the x,y,z-links (tx=t,ty=tz=1), defined on a honeycomb lattice. We have shown that the chiral gapless edge modes are described in the framework of the generalized Kitaev chain formalism, which makes it possible to calculate the Hall conductance of subbands for different filling and an arbitrary magnetic flux ϕ. At half-filling the gap in the center of the fermion spectrum opens for t>tc=2ϕ, a quantum phase transition in the 2D-topological insulator state is realized at tc. The phase state is characterized by zero energy Majorana states localized at the boundaries. Taking into account the on-site Coulomb repulsion U (where U<<1), the criterion for the stability of a topological insulator state is calculated at t<<1, tU. Thus, in the case of U>4Δ, the topological insulator state, which is determined by chiral gapless edge modes in the gap Δ, is destroyed.  相似文献   

14.
In the present work are reported the stress annealing (SA) effect on magnetic properties of Fe–Al–B alloys and the result on the piezomagnetic coefficient d33?=dB/dσ|H, where σ is the applied stress, B is the magnetic induction and H is the applied magnetic field. The objective is to evaluate the potential use of these alloys as smart materials of force sensors. The study comprises two alloys with compositions (Fe0.87Al0.13)98.4B1.6 (Al13) and (Fe0.82Al0.18)98.4B1.6 (Al18). The microstructure, hysteresis loops and B vs. σ|H were analyzed before and after the SA. Regarding the force sensitivity, the SA increased the piezomagnetic coefficient d33? due the introduction of an extrinsic anisotropy in both Fe–Al–B alloys. Moreover, the stress range, in which the piezomagnetic coefficient d33? is linear, is higher after the SA. Concerning the single phase (Fe0.87Al0.13)98.4B1.6 alloy, the force/pressure sensitivity and the linear stress range increase up to 16.8% and 47.1%, respectively. For the two phase (Fe0.82Al0.18)98.4B1.6 alloy, the increase was a bit higher, but the curves B vs. σ are hysteretic, spoiling the use of this material as a force sensor component.  相似文献   

15.
16.
17.
18.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号