共查询到20条相似文献,搜索用时 0 毫秒
1.
The biopolymer lignin is a potential source of valuable chemicals. Phenethyl phenyl ether (PPE) is representative of the dominant β-O-4 ether linkage. DFT is used to calculate the Boltzmann-weighted carbon-oxygen and carbon-carbon bond dissociation enthalpies (BDEs) of substituted PPE. These values are important for understanding lignin decomposition. Exclusion of all conformers that have distributions of less than 5% at 298 K impacts the BDE by less than 1 kcal mol(-1). We find that aliphatic hydroxyl/methylhydroxyl substituents introduce only small changes to the BDEs (0-3 kcal mol(-1)). Substitution on the phenyl ring at the ortho position substantially lowers the C-O BDE, except in combination with the hydroxyl/methylhydroxyl substituents, for which the effect of methoxy substitution is reduced by hydrogen bonding. Hydrogen bonding between the aliphatic substituents and the ether oxygen in the PPE derivatives has a significant influence on the BDE. CCSD(T)-calculated BDEs and hydrogen-bond strengths of ortho-substituted anisoles, when compared with M06-2X values, confirm that the latter method is sufficient to describe the molecules studied and provide an important benchmark for lignin model compounds. 相似文献
2.
A Wu BO Patrick E Chung BR James 《Dalton transactions (Cambridge, England : 2003)》2012,41(36):11093-11106
Hydrogenolysis reactions of so-called lignin model dimers using a Ru-xantphos catalyst are presented (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene). For example, of some nine models studied, the alcohol, 2-(2-methoxyphenoxy)-1-phenylethanol (), with 5 mol% Ru(H)(2)(CO)(PPh(3))(xantphos) () in toluene-d(8) at 135 °C for 20 h under N(2), gives in ~95% yield the C-O cleavage hydrogenolysis products, acetophenone () and guaiacol (), and a small amount (<5%) of the ketone, 2-(2-methoxyphenoxy)-1-phenylethanone (), as observed by (1)H NMR spectroscopy. The in situ Ru(H)(2)(CO)(PPh(3))(3)/xantphos system gives similar findings, confirming a recent report (J. M. Nichols et al., J. Am. Chem. Soc., 2010, 132, 12554). The active catalyst is formulated 'for convenience' as 'Ru(CO)(xantphos)'. The hydrogenolysis mechanism proceeds by initial dehydrogenation to give the ketone , which then undergoes hydrogenolysis of the C-O bond to give and . Hydrogenolysis of to and also occurs using the Ru catalyst under 1 atm H(2); in contrast, use of 3-hydroxy-2-(2-methoxyphenoxy)-1-phenyl-1-propanone (), for example, where the CH(2) of has been changed to CHCH(2)OH, gives a low yield (≤15%) of hydrogenolysis products. Similarly, the diol substrate, 2-(2-methoxyphenoxy)-1-phenyl-1,3-propanediol (), gives low yields of hydrogenolysis products. These low yields are due to formation of the catalytically inactive complexes Ru(CO)(xantphos)[C(O)C(OC(6)H(4)OMe)[double bond, length as m-dash]C(Ph)O] () and/or Ru(CO)(xantphos)[C(O)CH[double bond, length as m-dash]C(Ph)O] (), where the organic fragments result from dehydrogenation of CH(2)OH moieties in and . Trace amounts of Ru(CO)(xantphos)(OC(6)H(4)O), a catecholate complex, are isolated from the reaction of with . Improved syntheses of and lignin models are also presented. 相似文献
3.
Lignin is the most recalcitrant of the three components of lignocellulosic biomass. The strength and stability of the linkages have long been a great challenge for the degradation and valorization of lignin biomass to obtain bio-fuels and commercial chemicals. Up to now, the selective cleavage of C–O linkages of lignin to afford chemicals contains only C, H and O atoms. Our group has developed a cleavage/crosscoupling strategy for converting 4-O-5 linkage lignin model compounds into high value-a... 相似文献
4.
Lignin is the most recalcitrant of the three components of lignocellulosic biomass. The strength and stability of the linkages have long been a great challenge for the degradation and valorization of lignin biomass to obtain bio-fuels and commercial chemicals. Up to now, the selective cleavage of C–O linkages of lignin to afford chemicals contains only C, H and O atoms. Our group has developed a cleavage/crosscoupling strategy for converting 4-O-5 linkage lignin model compounds into high value-a... 相似文献
5.
Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study
The phenyl-shift reaction for the β-radical of phenethyl phenyl ether (PhCH(2)C?HOPh, β-PPE) is an integral step in the pyrolysis of PPE, which is a model compound for the β-O-4 linkage in lignin. We investigated the influence of natural occurring substituents (hydroxy, methoxy) on the reaction rate by calculating relative rate constants using density functional theory in combination with transition state theory, including anharmonic correction for low-frequency modes. The phenyl-shift reaction proceeds through an oxaspiro[2.5]octadienyl radical intermediate and the overall rate constants were computed invoking the steady-state approximation (its validity was confirmed). Substituents on the phenethyl ring have only little influence on the rate constants. If a methoxy substituent is located in the para position of the phenyl ring adjacent to the ether oxygen, the energies of the intermediate and second transition state are lowered, but the overall rate constant is not significantly altered. This is a consequence of the dominating first transition from reactant to intermediate in the overall rate constant. In contrast, o- and di-o-methoxy substituents significantly accelerate the phenyl-migration rate compared to β-PPE. 相似文献
6.
7.
Raquel F. P. Nogueira Ronaldo A. Pilli Nelson durÁn 《Applied biochemistry and biotechnology》1992,33(3):169-176
Growth of the ascomyceteChrysonilia sitophila during degradation of lignin model dimers and monomers was compared to a glucose control. An inhibition of growth by Cα-carbonyl
monomers and stimulation by β-O-4 lignin model and vanillyl alcohol were observed. A comparison of the degradation by this
ascomycete with the basidiomycetePhanerochaete chrysosoporium showed similarities in relation to the type of degradation caused. 相似文献
8.
A trimeric lignin model compound composed of α-O-4 and β-O-4 linkages was prepared by the microwave-assisted synthesis, which consisted of three steps: (a) the synthesis of 3-methoxy-4- benzyloxyacetophenone (2) from acetovanillone (1), (b) the bromination of compound 2 to produce 3- methoxy-4-benzyloxy-α-bromoacetophenone (3), and (c) followed by a nucleophilic substitution of compound (3) to obtain 3-methoxy-4-benzyloxy-α-(3-methoxy-4-(1-propenyl)phenol)-acetophenone (4). The target product was characterized by MS, 1H NMR and 13C NMR spectroscopy. It was found that the trimeric compound synthesized can be used as a preferable lignin model compound because it contains guaiacyl structural unit (3-methoxy-4-hydroxy phenyl propane) linked by α-O-4 and β-O-4 linkages. In addition, under the conditions of microwave irradiation, the reaction time of each step is significantly reduced, and the selectivity of target product is greatly improved. The yields of each step and the overall sequence are 95.31%. 87.3%. 90.6% and 75.4% (95.31%× 87.3% × 90.6%). respectively. 相似文献
9.
10.
Enrique Alvarez-Manzaneda Rachid ChahbounEsteban Alvarez Ramón Alvarez-ManzanedaPedro E. Muñoz Fermín JimenezHanane Bouanou 《Tetrahedron》2011,67(46):8910-8917
α-Acetoxy aldehydes or α-acetoxy ketones can be efficiently synthesized by treating 2,3-epoxy primary alcohols with lead tetraacetate. The reaction, which proceeds with complete regio- and stereoselectivity facilitates the enantioselective synthesis of α-acetoxy carbonyl compounds from allyl alcohols, via Sharpless epoxidation. Cyclic β-hydroxy ethers, with an oxygenated five-, six- or seven-membered ring, are transformed into α-acetoxy ethers. 相似文献
11.
A multi-level multi-layer QM/QM method, the relativistic pseudopotential correlation-consistent composite approach within an ONIOM framework (rp-ccCA-ONIOM), was applied to study the oxidative addition of the C(α)-C(β) bond in an archetypal arylglycerol β-aryl ether (β-O-4 linkage) substructure of lignin to Ni, Cu, Pd and Pt transition metal atoms. The chemically active high-level layer is treated using the relativistic pseudopotential correlation-consistent composite approach (rp-ccCA), an efficient methodology designed to reproduce an accuracy that would be obtained using the more computationally demanding CCSD(T)/aug-cc-pCV∞Z-PP, albeit at a significantly reduced computational cost, while the low-level layer is computed using B3LYP/cc-pVTZ. The thermodynamic and kinetic feasibilities of the model reactions are reported in terms of enthalpies of reactions at 298 K (ΔH°(298)) and activation energies (ΔH-act). The results obtained from the rp-ccCA:B3LYP hybrid method are compared to the corresponding values using CCSD(T) and several density functionals including B3LYP, M06, M06 L, B2PLYP, mPWPLYP and B2GP-PLYP. The energetics of the oxidative addition of C?C bond in ethane to Ni, Cu, Pd and Pt atoms are also reported to demonstrate that the rp-ccCA method effectively reproduces the accuracy of the CCSD(T)/aug-cc-pCV∞Z method. Our results show that in the catalytic activation of the C(α)-C(β) bond of β-O-4, the use of platinum metal catalysts will lead to the most thermodynamically favored reaction with the lowest activation barrier. 相似文献
12.
《Journal of organometallic chemistry》1992,426(2):C33-C35
The reaction at room temperature of [RuH(O2CCH3)(CO)(PPh3)2] (1) with β-nitrostyrene promotes the carbon-nitrogen bond cleavage a 相似文献
13.
The kinetics of oxidation of α,β-unsaturated compounds by platinum(IV) in the presence of alkali {[OH−]= (1–9) × 10−3 mol dm−3} have been investigated over the 303–318 K temperature range . The rate of the reaction is dependent on the first power of the concentrations of substrates, oxidant, and alkali. The rate constant increases with an increase in ionic strength and also with increasing dielectric constant of the medium. The oxidation rates follow the order: –CN > –CONH2 > –COO−. The values of the third order rate constant (k3) for the oxidation of acrylonitrile, acrylamide and acrylate are 1.24, 0.826 and 0.628 mol−2 dm6 s−1 respectively, at 303 K. The oxidations of the substrates by PtCl5(OH)2− take place by an inner-sphere mechanism. Platinum(IV) is reduced to platinum(II) by the substrates in a one-step two-electron transfer process to give reaction products. The major reaction product, HCHO, is identified from the reaction mixture using i.r. spectrometry, n.m.r. and C, H, N analysis. A tentative reaction mechanism, leading to the formation of products, has been suggested. The activation parameters of the reaction have been evaluated. 相似文献
14.
Quantum chemical calculations using gradient-corrected (B3LYP) density functional theory have been carried out to investigate the mechanism of the oxidative cleavage of alkenes by ruthenium tetraoxide. The initial reaction of the tetraoxide with the olefin occurs via a [3+2] cycloaddition as in the case of osmium tetraoxide. The results clearly show that the bond cleavage does not take place at the primary adduct, but much later in the reaction path. After the formation of the ruthenium(VI)dioxo-2,5-dioxolane, the reaction proceeds with the addition of a second olefin to yield ruthenium(IV)-bis(2,5-dioxolane), which in turn becomes oxidized first to rutheniumoxo(VI)-bis(2,5-dioxolane) 6(Ru) and then to ruthenium(VIII)-dioxo-bis(2,5-dioxolane) 7(Ru). Only in complexes containing the metal center in the formal oxidation state +VIII are low activation barriers for C-C bond cleavage and exothermic formation of carbonyl compounds as products calculated. The lowest activation barrier, DeltaH(++) = 2.5 kcal/mol, is calculated for the C-C bond breaking reaction of 7(Ru) which is predicted as the pivotal intermediate of the oxidation reaction. The calculations of the oxidation reaction with OsO(4) show that those reactions where the oxidation state of the metal increases have larger activation barriers for M = Ru than for M = Os, while reactions which reduce the oxidation state have a lower activation barrier for ruthenium compounds. Also, reactions which increase the oxidation state of the metal are in the case of M = Os more exothermic than for M = Ru. In this work, all important points of the potential energy surface (PES) are reported, and the complete catalytic cycle for the oxidative cleavage of olefins by ruthenium tetraoxide is presented. 相似文献
15.
Abed Badrian Manouchehr Mamaghani Sharif Kaamyabi 《Phosphorus, sulfur, and silicon and the related elements》2016,191(10):1375-1379
Trimethylsilyl iodide (TMSI) is introduced as an efficient reagent for the one-pot and direct transformation of carbamates of unsaturated β-aminoesters into the corresponding α-methylene-β-lactams and α-arylidene-β-lactams. The mild reaction conditions, excellent yields and easy work-up procedures make it a useful alternative to previously applied procedures for the rapid synthesis of β-lactams from easily available Baylis-Hillman adducts. 相似文献
16.
5-Substituted-4-amino-3-thiol-1, 2, 4-triazoles (1a- b) react with orthonitrochloro- benzene or para-nitrochlorobenzene to give N-N bond cleavage products 2a-d, one structure of which (2b) has been unambiguously confirmed by an X-ray structural analysis. 相似文献
17.
The aerobic oxidation of a phenolic lignin model compound with a vanadium catalyst results in the oxidative cleavage of the C?C bond between the aryl ring and the adjacent hydroxy-substituted carbon atom. Labeling experiments indicate key mechanistic differences to a previously reported related C?O bond cleavage reaction. The selectivity in C?C versus C?O bond cleavage depends on the choice of the vanadium catalyst. 相似文献
18.
《Journal of organometallic chemistry》1989,371(1):C21-C25
Two internal alkynes undergo insertion at 20°C into the PdC bond of the cyclopalladated derivative of dimethylaminomethylferrocene to give new organometallic compounds. When the reaction with diphenylacetylene is performed at higher temperatures, depalladation occurs readily to give six- and seven-membered ortho-fused rings through new annulation reactions of phenyl groups, formation of one of these involving also the cleavage of a CN bond. 相似文献
19.
Depalo N Comparelli R Huskens J Ludden MJ Perl A Agostiano A Striccoli M Curri ML 《Langmuir : the ACS journal of surfaces and colloids》2012,28(23):8711-8720
A fundamental and systematic study on the fabrication of a supramolecularly assembled nanostructure of an organic ligand-capped CdS nanocrystal (NC) and multiple heptamine β-cyclodextrin ((NH(2))(7)βCD) molecules in aqueous solution has been here reported. The functionalization process of presynthesized hydrophobic CdS NCs by means of (NH(2))(7)βCD has been extensively investigated by using different spectroscopic and structural techniques, as a function of different experimental parameters, such as the composition and the concentration of CD, the concentration of CdS NCs, the nature of the NC surface capping ligand (oleic acid and octylamine), and the organic solvent. The formation of a complex based on the direct coordination of the (NH(2))(7)βCD amine groups at the NC surface has been demonstrated and found responsible for the CdS NC phase transfer process. The amine functional group in (NH(2))(7)βCD and the appropriate combination of pristine capping agent coordinating the NC surface and a suitable solvent have been found decisive for the success of the CdS NC phase transfer process. Furthermore, a layer-by-layer assembly experiment has indicated that the obtained (NH(2))(7)βCD functionalized CdS NCs are still able to perform the host-guest chemistry. Thus, they offer a model of a nanoparticle-based material with molecular receptors, useful for bio applications. 相似文献
20.
As a result of a continuing study utilizing nitrogenous bases2–6, we now wish to report that the base 3-quinuclidinol (13) is useful for the cleavage of β-keto and vinylogous β-keto esters. 相似文献