首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the structural, electronic and optical properties of the two-dimensional heterostructure based on ZnO and Mg(OH)2 are investigated by first-principle calculations. The ZnO/Mg(OH)2 heterostructure, formed by van der Waals (vdW) interaction, possesses a type-II band structure, which can separate the photogenerated electron–holes constantly. The heterostructure has decent band edge positions for the redox reaction to decompose the water at pH 0 and 7. As for the interfacial properties of the heterostructure, the trend of band bending of the ZnO and Mg(OH)2 layers in the heterostructure is addressed, which will result a built-in electric field. Besides, the charge-density difference and potential drop across the interface of the ZnO/Mg(OH)2 vdW heterostructure are also calculated. Finally, the heterostructure is demonstrated that it not only has excellent ability to capture the light near the visible spectrum region, but also can improve the optical performance for the monolayered ZnO and Mg(OH)2.  相似文献   

2.
The electronic and optical properties of different stacked multilayer SiC and GeC are investigated with and without external electric field (EEF). The band gaps of multilayer SiC and GeC are found smaller than that of monolayer SiC and GeC due to the interlayer coupling effect. When EEF is applied, the direct band gaps (ΔKM) of multilayer SiC and direct band gaps (ΔKK) of multilayer GeC all turn to indirect band gaps (ΔKG) as the band at the G point drops dramatically toward zero. The imaginary part ε2(ω)s of multilayer SiC and GeC show that new absorption peaks between 2–5 eV appear when the polarized direction is perpendicular to the layer plane, and new absorption peaks in infrared region appear as the EEF is higher than a certain point when the polarized direction is parallel to the layer plane. Our calculations reveal that different stacking sequences and EEF can provide a wide tunable band structures and optical properties for multilayer SiC and GeC.  相似文献   

3.
First principles calculations are performed to investigate the structural and electronic properties of MX2 (M = Nb, Pt; X = S, Se) monolayers and their van der Waals (vdW) heterostructures. The dynamical stability of monolayers and vdW heterostructures is confirmed by binding energy and phonon spectra. An indirect band gap nature is found for PtS2 and PtSe2 monolayers while NbS2, NbSe2 and all vdW heterostructures are metals. The intrinsic electronic properties of both NbX2 and PtX2 are well preserved due to weak vdW contact. It is demonstrated that a p-type Schottky contact with a small barrier height is formed at NbX2-PtX2 interface. The zero tunnel barrier and higher potential drop across the interface in these contacts imply large transfer of charge carriers across the interface, making them potential candidates in nanoelectronic device applications.  相似文献   

4.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

5.
《Physics letters. A》2020,384(7):126150
Based on the first-principles method, we investigate the electronic structure of SnC/BAs van der Waals (vdW) heterostructure and find that it has an intrinsic type-II band alignment with a direct band gap of 0.22 eV, which favors the separation of photogenerated electron–hole pairs. The band gap can be effectively modulated by applying vertical strain and external electric field, displaying a large alteration of band gap via the strain and experiencing an indirect-to-direct band gap transition. Moreover, the band gap of the heterostructure varies almost linearly with external electric field, and the semiconductor-to-metal transition can be realized in the presence of a strong electric field. The calculated band alignment and the optical absorption reveal that the SnC/BAs heterostructure could present an excellent light-harvesting performance. Our designed heterostructure is expected to have great potential applications in nanoelectronic devices and photovoltaics and optical properties.  相似文献   

6.
Recently, fabricating type-II vertical van der Waals (vdWs) heterostructure is a promising material for hydrogen production. The absorption capability, charge density distributions, band alignments and electronic properties of the monolayers and heterostructures are systematically investigated using computational studies. Using ab initio molecular dynamics, binding energy and phonon calculations, the stability of the heterostructures are verified. Both heterostructures are type-II materials, which can increase the separation of charge carriers. Moreover, the charge density difference and the potential drop across the interface of MSe2/BSe creates a high built-in electric field that can prevent the recombination of charge carriers. We found that the visible-light optical properties of both heterostructures are much enhanced with suitable bandgap energy for water splitting. The band alignment suggests that the heterostructures straddle water redox potentials in acid solutions (0 < pH < 7). Our study predicted that MSe2/BSe vdW heterostructures have great potential for photocatalytic hydrogen production.  相似文献   

7.
《Physics letters. A》2020,384(21):126532
Based on the first principles calculations, we have systematically investigated the electronic structures of Cu2Si/C2N van der Waals (vdW) heterostructures. We discovered that the electronic structures of Cu2Si and C2N monolayers are preserved in Cu2Si/C2N vdW heterostructures. There is a transition from the n-type Schottky contact to Ohmic contact when the interfacial distance decreases from 4.4 to 2.7 Å, which indicates that the Schottky barrier can be tuned effectively by the interfacial distance. Meanwhile, we find that the carrier concentration between the Cu2Si and C2N interfaces in the vdW heterostructures can be tuned. These findings suggest that the Cu2Si/C2N vdW heterostructure is a promising candidate for application in future nanoelectronics and optoelectronics devices.  相似文献   

8.
Using ab initio calculations, we have studied the structural, electronic and elastic properties of M2GeC, with M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W. Geometrical optimizations of the unit cell are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Ge p hybridizations. The elastic constants are calculated using the static finite strain technique. The shear modulus C 44, which is directly related to the hardness, reaches its maximum when the valence electron concentration is in the range 8.41–8.50. We derived the bulk and shear moduli, Young’s moduli and Poisson’s ratio for ideal polycrystalline M2GeC aggregates. We estimated the Debye temperature of M2GeC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic constants of Ti2GeC, V2GeC, Cr2GeC, Zr2GeC, Nb2GeC, Mo2GeC, Hf2GeC, Ta2GeC and W2GeC compounds, and it still awaits experimental confirmation.  相似文献   

9.
10.
Within the framework of the effective-mass approximation, the exciton states and interband optical transitions in InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated using a variational method, in which the important built-in electric field (BEF) effects, dielectric-constant mismatch and three-dimensional confinement of the electron and hole in InxGa1−xN QDs are considered. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the exciton oscillator strength.  相似文献   

11.
Novel optoelectronic and photovoltaic devices are promising, exploiting MoSi2N4-based van der Waals (vdW) heterostructures. Herein, six vertical XSi2N4/Cs2SnI6 (X = Cr, Mo, W) heterostructures are constructed and the atomic structure, stability, and optoelectronic properties via first-principles calculations are investigated. The results of binding energies indicate that XSi2N4/SnI4 is energetically favorable to be established compared to the XSi2N4/CsI. Computed charge density differences show that at the XSi2N4/SnI4 interface, there is no significant charge migration or rearrangement, making it unsuitable for use in charge transport devices. It is worth noticing that the built-in electric field induced by electron transfer from CsI to the XSi2N4 layer prevents light-induced electron and hole recombination, thereby improving carrier lifetime. Furthermore, the CrSi2N4/CsI heterostructure exhibits a wider range of visible light absorption, demonstrating its potential for applications in photoelectronic devices. The electronic and optical properties of XSi2N4/Cs2SnI6 can be tuned through element substitution. The findings could provide useful guidance for designing XSi2N4/Cs2SnI6 photoelectronic and photovoltaic devices.  相似文献   

12.
Growth and the optical properties of epitaxial heterostructures Si(111)/(CrSi2 nanocrystallites)/Si(111) based on nanosized islands of chromium disilicide (CrSi2) on Si(111) were studied using low-energy electron diffraction, atomic-force microscopy, and optical reflection and transmission spectroscopy. The heterostructures with thicknesses of 0.1, 0.3, 0.6, 1.0, and 1.5 nm were formed by reactive epitaxy at a temperature of 500°C followed by the epitaxial growth of silicon at 750°C. The specific features of changes in the density and sizes of CrSi2 islands on the silicon surface were determined at T = 750°C as the chromium layer thickness was increased. It was established that, in the heterostructures with chromium layer thicknesses exceeding 0.6 nm, a small part of faceted Cr2Si2 nanocrystallites (NCs) emerge into near-surface region of the silicon, which is confirmed by the data from optical reflectance spectroscopy and an analysis of the spectral dependence of the absorption coefficient. A critical size of NCs is shown to exist above which their shift to the silicon surface is hampered. The decreased density of emerging NCs at chromium layer thicknesses of 1.0–1.5 nm is associated with the formation of coarser NCs within a silicon layer, which is confirmed by the data from differential reflection spectroscopy.  相似文献   

13.
ZnSe/semi‐insulating GaAs interfaces were studied by observing photogenerated plasmon–LO (PPL) coupled modes by nonresonant micro‐Raman spectroscopy. The effect of the carriers generated by the focused laser beam was investigated for a series of different thicknesses of ZnSe epitaxial layers. The PPL mode in GaAs was observed in the micro‐Raman spectra for all samples, but with different magnitude. The plasma is believed to be an electron gas as a result of the negative nature of the interfacial region that contains predominantly hole traps. The free carrier concentration is estimated to be > 1018 cm−3 and their lifetime ∼0.1 ns. This relatively long lifetime suggests that the ZnSe/GaAs interface has to be of high structural quality leading to a low recombination velocity. ZnSe/GaAs heterostructures of less crystalline quality (as determined by resonant Raman measurements) shows the effect of photogenerated carriers only to lesser extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
We report a facile synthesis of ZnO/Fe2O3 heterostructures based on the hydrolysis of FeCl3 in the presence of ZnO nanoparticles. The material structure, composition, and its optical properties have been examined by means of transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and diffuse reflectance UV–visible spectroscopy. Results obtained show that 2.9 nm-sized Fe2O3 nanoparticles produced assemble with ZnO to form ZnO/Fe2O3 heterostructures. We have evaluated the photodegradation performances of ZnO/Fe2O3 materials using salicylic acid under UV-light. ZnO/Fe2O3 heterostructures exhibited enhanced photocatalytic capabilities than commercial ZnO due to the effective electron/hole separation at the interfaces of ZnO/Fe2O3 allowing the enhanced hydroxyl and superoxide radicals production from the heterostructure.  相似文献   

15.
We have performed first-principles studies on electronic structure and elastic properties of Ti2GeC. The calculated band structure shows that this compound is electrical conductor. From the pressure dependence of elastic constants, we find that Ti2GeC is most stable in the pressure range from 0 to 100 GPa. The strong Ti 3d, Ge 4p and C 2p hybridization may stabilize the structure of Ti2GeC. By analyzing the ratio between the bulk and shear moduli, we conclude that Ti2GeC is brittle in nature, and the brittleness of Ti2GeC originated from the large value of Ti atom occupying the internal parameter z.  相似文献   

16.
Considering the strong built-in electric field (BEF), dielectric-constant mismatch and 3D confinement of the electron and hole, the exciton states and interband optical transitions in [0 0 0 1]-oriented Ga-rich wurtzite InxGa1−xN/GaN strained quantum dot (QD) nanowire heterostructures are investigated theoretically using a variational approach under the effective mass approximation. We find that the strong BEF gives rise to an obvious reduction of the effective band gap of QDs and leads to a remarkable electron-hole spatial separation. The BEF, QD height and radius, and dielectric mismatch effects have a significant influence on exciton binding energy, electron interband optical transitions, and the radiative decay time. Our calculations show that the radiative decay time of the redshifted transitions is large and increases almost exponentially when the QD height increases, which is in good agreement with the previous experimental and theoretical results.  相似文献   

17.
Using heterogeneous photocatalysts for harvesting sunlight and converting it for water remediation and splitting are promising to mitigate the possible crisis of environment and energy. Among various composites, the MoS2-based heterostructures and Ni-based systems exhibit unique electronic, optical properties and redox capabilities, enabling their roles as photocatalysts. Herein, the impacts of chemical environments on the Ni electronic structures within the MoS2-Ag-Ni ternary systems are studied via X-ray photoemission electron spectroscopy (X-PEEM). Ni nanoparticles with two different sizes of 70 and 200 nm were loaded to MoS2 flakes with silver buffers as bridges. Heterostructures with a nominal mol percentage of (MoS2)77Ag3.7Ni19.3 were synthesized through an ultrasound-assisted wet method. The oxidation states and various interfacial interactions of Ni with MoS2 in MoS2-Ag-Ni ternary composite are spectromicroscopically determined, combining the X-ray absorption spectroscopy near Ni L-edges and the imaging capability of the X-PEEM. Results showed that Ni mainly retrains its chemical states of metal and native oxidizations without observable electronic features subjected to bonding with the sulfur from the MoS2 flakes. The charge migration channel set up by the Ag buffer thus contributes to electron–hole migrations that facilitate the photocatalytic performance of the ternary system eventually.  相似文献   

18.
In this paper we review the radiative recombination processes occurring in semiconductor quantum wells and superlattices under different excitation conditions. We consider processes whose radiative efficiency depends on the photogenerated density of elementary excitations and on the frequency of the exciting field, including luminescence induced by multiphoton absorption, exciton and biexciton radiative decay, luminescence arising from inelastic excitonic scattering, and electron-hole plasma recombination.

Semiconductor quantum wells are ideal systems for the investigation of radiative recombination processes at different carrier densities owing to the peculiar wavefunction confinement which enhances the optical non-linearities and the bistable behaviour of the crystal. Radiative recombination processes induced by multi-photon absorption processes can be studied by exciting the crystal in the transparency region under an intense photon flux. The application of this non-linear spectroscopy gives direct access to the excited excitonic states in the quantum wells owing to the symmetry properties and the selection rules for artificially layered semiconductor heterostructures.

Different radiative recombination processes can be selectively tuned at exciting photon energies resonant with real states or in the continuum of the conduction band depending on the actual density of photogenerated carriers. We define three density regimes in which different quasi-particles are responsible for the dominant radiative recombination mechanisms of the crystal: (i) The dilute boson gas regime, in which exciton density is lower than 1010 cm-2. Under this condition the decay of free and bound excitons is the main radiative recombination channel in the crystal. (ii) The intermediate density range (n < 1011 cm-2) at which excitonic molecules (biexcitons) and inelastic excitonic scattering processes contribute with additional decay mechanisms to the characteristic luminescence spectra. (iii) The high density range (n ?1012 cm-2) where screening of the Coulomb interaction leads to exciton ionization. The optical transitions hence originate from the radiative decay of free-carriers in a dense electron-hole plasma.

The fundamental theoretical and experimental aspects of the radiative recombination processes are discussed with special attention to the GaAs/Al x Ga1-x As and Ga x In1-x As/Al y In1-y As materials systems. The experimental investigations of these effects are performed in the limit of intense exciting fields by tuning the density of photogenerated quasi-particles and the frequency of the exciting photons. Under these conditions the optical response of the quantum well strongly deviates from the well-known linear excitonic behaviour. The optical properties of the crystal are then no longer controlled by the transverse dielectric constant or by the first-order dielectric susceptibility. They are strongly affected by many-body interactions between the different species of photogenerated quasi-particles, resulting in dramatic changes of the emission properties of the semiconductor.

The systematic investigation of these radiative recombination processes allows us to selectively monitor the many-body induced changes in the linear and non-linear optical transitions involving quantized states of the quantum wells. The importance of these effects, belonging to the physics of highly excited semiconductors, lies in the possibility of achieving population inversion of states associated with different radiative recombination channels and strong optical non-linearities causing laser action and bistable behaviour of two-dimensional heterostructures, respectively.  相似文献   

19.
异质结工程是一种提高半导体材料光电性能的有效方法.本文构建了全无机钙钛矿CsPbX3(X=Cl,Br,I)和二维五环石墨烯penta-graphene(PG)的新型范德瓦耳斯(vdW)异质结,利用第一性原理研究了CsPbX3-PG异质结不同界面接触的稳定性,进而计算了稳定性较好的Pb-X接触界面异质结的电子结构和光电性能.研究结果表明,CsPbX3-PG(X=Cl,Br,I)异质结具有II型能带排列特征,能级差距由Cl向I逐渐缩小,具有良好的光生载流子分离能力和电荷输运性质.此外,研究发现CsPbX3-PG异质结能有效拓宽材料的光吸收谱范围,并能显著提高其光吸收能力,尤其是CsPbI3具有最优的光吸收性能.经理论估算,CsPbX3-PG的光电功率转换效率(PCE)可高达21%.这些结果表明,全无机金属卤化物钙钛矿CsPbX3-PG异质结可以有效地提高半导体材料的光电性能,预期在光电转换器件中具有重要的应用潜力.  相似文献   

20.
The band structures, density of states and effective masses of photogenerated carriers for CaZrTi2O7 photocatalyst were performed using first principles method with the virtual crystal approximation. The results indicated that CaZrTi2O7 has an indirect band gap of about 3.25 eV. The upper valence bands of CaZrTi2O7 are formed by O 2p states mixed with Ti 3d states, Zr 4d, 4p and 5s states, while the conduction bands are dominated by Ti 3d states, Zr 4d states and O 2p states. The calculated valence bands maximum (VBM) potential is located at 2.60 V (vs. normal hydrogen electrode (NHE)), while the conduction bands minimum (CBM) potential at ?0.65 V. Therefore, CaZrTi2O7 has the ability to split water to hydrogen and oxygen under UV light irradiation. The calculated minimum effective mass of electron in CBM is about 1.35 m0, and the minimum effective mass of hole in VBM is about 1.23 m0. The lighter effective masses facilitate the migration of photogenerated carriers and improve photocatalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号