首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method,though they have essentially different bilinear forms.More precisely,we prove its reliability and efficiency for the actual error measured in the standard DG norm.We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution.Numerical results are presented to verify the theoretical analysis.  相似文献   

2.
We consider the problem of uniform (input-irrespective) observation of a scalar bilinear system. For state estimation, we use a linear observer with observation error feedback whose feedback coefficients form a hierarchy in powers of the feedback parameter. For a sufficiently large value of the parameter, the observer provides an asymptotic estimate of the unknown system state vector.  相似文献   

3.
We consider the problem of optimal observation of unmeasurable variables in linear dynamical systems with the use of observers of full and reduced order. For the observation performance characteristic to be minimized, we take the initial perturbation damping level in the observation error equation defined as the maximum ratio of the L 2-norm of the error to the Euclidean norm of the corresponding initial state. Conditions for the existence of such minimax observers and their synthesis are stated in the form of linear matrix inequalities.  相似文献   

4.
针对基于输出反馈和具有有限区域信号量化的离散时间系统,进行了系统稳定性分析与量化参数设计的研究.首先,分别对状态观测误差系统和对象系统在有限区域对数量化作用下的系统渐近稳定性进行了分析,得到了相应的稳定性条件,接着针对对数型量化器,给出了两个系统稳定性之间的内在关联,同时得到了各有限区域量化器的量化区间上界值.在此基础上,得到了保证各子系统稳定的系统通信速率比值.最后,给出了在时变量化作用下基于状态观测的控制策略和仿真例子.  相似文献   

5.
We propose and analyze an a posteriori error estimator for a partial differential equation (PDE)-constrained optimization problem involving a nondifferentiable cost functional, fractional diffusion, and control-constraints. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly PDE and propose an equivalent optimal control problem with a local state equation. For such an equivalent problem, we design an a posteriori error estimator which can be defined as the sum of four contributions: two contributions related to the approximation of the state and adjoint equations and two contributions that account for the discretization of the control variable and its associated subgradient. The contributions related to the discretization of the state and adjoint equations rely on anisotropic error estimators in weighted Sobolev spaces. We prove that the proposed a posteriori error estimator is locally efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the examples that we perform, optimal experimental rates of convergence.  相似文献   

6.
We propose and describe an alternative perspective to the study and numerical approximation of dynamical systems. It is based on a variational approach that seeks to minimize the quadratic error understood as a deviation of paths from being a solution of the corresponding system. Although this philosophy has been examined recently from the point of view of the direct method, we exploit optimality conditions and steepest descent strategies to establish precise and easy-to-implement numerical schemes for the approximation. We show the practical performance in a number of selected examples and indicate how this strategy, with minor changes, may also be used to deal with boundary value problems. Our emphasis is placed more so on relevant results that justify the numerical implementation and less on abstract theoretical results under optimal sets of assumptions.  相似文献   

7.
In variational data assimilation a least‐squares objective function is minimised to obtain the most likely state of a dynamical system. This objective function combines observation and prior (or background) data weighted by their respective error statistics. In numerical weather prediction, data assimilation is used to estimate the current atmospheric state, which then serves as an initial condition for a forecast. New developments in the treatment of observation uncertainties have recently been shown to cause convergence problems for this least‐squares minimisation. This is important for operational numerical weather prediction centres due to the time constraints of producing regular forecasts. The condition number of the Hessian of the objective function can be used as a proxy to investigate the speed of convergence of the least‐squares minimisation. In this paper we develop novel theoretical bounds on the condition number of the Hessian. These new bounds depend on the minimum eigenvalue of the observation error covariance matrix and the ratio of background error variance to observation error variance. Numerical tests in a linear setting show that the location of observation measurements has an important effect on the condition number of the Hessian. We identify that the conditioning of the problem is related to the complex interactions between observation error covariance and background error covariance matrices. Increased understanding of the role of each constituent matrix in the conditioning of the Hessian will prove useful for informing the choice of correlated observation error covariance matrix and observation location, particularly for practical applications.  相似文献   

8.
In this paper, we present an a posteriori error analysis for mixed finite element approximation of convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates can be used to construct reliable adaptive mixed finite elements for the control problems.  相似文献   

9.
We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.  相似文献   

10.
We investigate systems of interacting stochastic differential equations with two kinds of heterogeneity: one originating from different weights of the linkages, and one concerning their asymptotic relevance when the system becomes large. To capture these effects, we define a partial mean field system, and prove a law of large numbers with explicit bounds on the mean squared error. Furthermore, a large deviation result is established under reasonable assumptions. The theory will be illustrated by several examples: on the one hand, we recover the classical results of chaos propagation for homogeneous systems, and on the other hand, we demonstrate the validity of our assumptions for quite general heterogeneous networks including those arising from preferential attachment random graph models.  相似文献   

11.
We consider here a linear quasi-geostrophic ocean model. We look for controls insensitizing (resp. ε-insensitizing) an observation function of the state. The existence of such controls is equivalent to a null controllability property (resp. an approximate controllability property) for a cascade Stokes-like system. Under reasonable assumptions on the spatial domains where the observation and the control are performed, we are able to prove these properties. To cite this article: E. Fernández-Cara et al., C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

12.
We address risk minimizing option pricing in a regime switching market where the floating interest rate depends on a finite state Markov process. The growth rate and the volatility of the stock also depend on the Markov process. Using the minimal martingale measure, we show that the locally risk minimizing prices for certain exotic options satisfy a system of Black-Scholes partial differential equations with appropriate boundary conditions. We find the corresponding hedging strategies and the residual risk. We develop suitable numerical methods to compute option prices.  相似文献   

13.
The scaled total least‐squares (STLS) method unifies the ordinary least‐squares (OLS), the total least‐squares (TLS), and the data least‐squares (DLS) methods. In this paper we perform a backward perturbation analysis of the STLS problem. This also unifies the backward perturbation analyses of the OLS, TLS and DLS problems. We derive an expression for an extended minimal backward error of the STLS problem. This is an asymptotically tight lower bound on the true minimal backward error. If the given approximate solution is close enough to the true STLS solution (as is the goal in practice), then the extended minimal backward error is in fact the minimal backward error. Since the extended minimal backward error is expensive to compute directly, we present a lower bound on it as well as an asymptotic estimate for it, both of which can be computed or estimated more efficiently. Our numerical examples suggest that the lower bound gives good order of magnitude approximations, while the asymptotic estimate is an excellent estimate. We show how to use our results to easily obtain the corresponding results for the OLS and DLS problems in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this article, we propose a robust tube-based MPC formulation for a class of hybrid systems, namely autonomously switched PWA systems, with bounded additive disturbances. The term tube-based refers to those control techniques whose objective is to maintain all possible trajectories of the uncertain system inside a tube which is a set around the nominal (or reference) system trajectory, that is free from disturbances. Common methods in tube-based control systems consider an error dynamical system as the difference between the state of the nominal system and the state of the perturbed system. However, this definition of the error dynamical system leads to a complicated switched affine system for PWA systems. Therefore, we use a new notion of the reference system similar to the nominal system except that the switching between the various modes of the PWA system is driven by the state of the real system. Using this reference system instead of the nominal system leads us to an error dynamical system that can be modeled as a switched linear system. We employ a switched linear controller to stabilize this error system under arbitrary switching. This auxiliary controller forces the states of the uncertain system to remain in a tube confined to the invariant set around the state of the reference system. We add new constraints and tighten some other constraints of the nominal hybrid MPC for the reference system, in order to ensure convergence of the uncertain system and to guarantee robust exponential stability of the closed-loop system.  相似文献   

15.
We study a linear model of McKendrick‐von Foerster‐Keyfitz type for the temporal development of the age structure of a two‐sex human population. For the underlying system of partial integro‐differential equations, we exploit the semigroup theory to show the classical well‐posedness and asymptotic stability in a Hilbert space framework under appropriate conditions on the age‐specific mortality and fertility moduli. Finally, we propose an implicit finite difference scheme to numerically solve this problem and prove its convergence under minimal regularity assumptions. A real data application is also given. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 706–736, 2016  相似文献   

16.
We show under very general assumptions that error bounds for an individual eigenvector of a matrix can be computed if and only if the geometric multiplicity of the corresponding eigenvalue is one. Basically, this is true if not computing exactly like in computer algebra methods. We first show, under general assumptions, that nontrivial error bounds are not possible in case of geometric multiplicity greater than one. This result is also extended to symmetric, Hermitian and, more general, to normal matrices. Then we present an algorithm for the computation of error bounds for the (up to normalization) unique eigenvector in case of geometric multiplicity one. The effectiveness is demonstrated by numerical examples.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
ABSTRACT

This paper studies partially observed risk-sensitive optimal control problems with correlated noises between the system and the observation. It is assumed that the state process is governed by a continuous-time Markov regime-switching jump-diffusion process and the cost functional is of an exponential-of-integral type. By virtue of a classical spike variational approach, we obtain two general maximum principles for the aforementioned problems. Moreover, under certain convexity assumptions on both the control domain and the Hamiltonian, we give a sufficient condition for the optimality. For illustration, a linear-quadratic risk-sensitive control problem is proposed and solved using the main results. As a natural deduction, a fully observed risk-sensitive maximum principle is also obtained and applied to study a risk-sensitive portfolio optimization problem. Closed-form expressions for both the optimal portfolio and the corresponding optimal cost functional are obtained.  相似文献   

18.
In this paper we consider stochastic systems with finite state space and counting process output. In particular we address the question whether a given system has a minimal representation, where roughly speaking minimality means minimality of the size of the state space. We show that minimality is connected to a suitably defined notion of observability. Finally we present an algorithm that enables us, starting from a given representation, to construct a minimal representation for the same system  相似文献   

19.
We consider a deteriorating system submitted to external and internal failures, whose deterioration level is known by means of inspections. There are two types of repairs: minimal and perfect, depending on the deterioration level, each one following a different phase-type distribution. The failures and the inspections follow different Markovian arrival processes (MAP). Under these assumptions, the system is governed by a generalized Markov process, whose state space and generator are constructed. This general model includes the phase-type renewal process as a special case. The distribution of the number of minimal and perfect repairs between two inspections are determined. A numerical application optimizing costs is performed, and different particular cases of the model are compared.  相似文献   

20.
We study a stochastic optimization problem under constraints in a general framework including financial models with constrained portfolios, labor income and large investor models and reinsurance models. We also impose American-type constraint on the state space process. General objective functions including deterministic or random utility functions and shortfall risk loss functions are considered. We first prove existence and uniqueness result to this optimization problem. In a second part, we develop a dual formulation under minimal assumptions on the objective functions, which are the analogue of the asymptotic elasticity condition of Kramkov and Schachermayer (1999).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号