首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Bogdanov‐Takens bifurcations of a Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting were studied. In the paper “Diff. Equ. Dyn. Syst. 20(2012), 339‐366,” Gupta et al proved that the Leslie‐Gower predator‐prey model with Michaelis‐Menten–type prey harvesting has rich dynamics. Some equilibria of codimension 1 and their bifurcations were discussed. In this paper, we find that the model has an equilibrium of codimensions 2 and 3. We also prove analytically that the model undergoes Bogdanov‐Takens bifurcations (cusp cases) of codimensions 2 and 3. Hence, the model can have 2 limit cycles, coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1 as the values of parameters vary. Moreover, several numerical simulations are conducted to illustrate the validity of our results.  相似文献   

2.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

3.
The goal of this work is to examine the global behavior of a Gause‐type predator–prey model in which two aspects have been taken into account: (i) the functional response is Holling type III; and (ii) the prey growth is affected by a weak Allee effect. Here, it is proved that the origin of the system is a saddle point and the existence of two limit cycles surround a stable positive equilibrium point: the innermost unstable and the outermost stable, just like with the strong Allee effect. Then, for determined parameter constraints, the trajectories can have different ω ? limit sets. The coexistence of a stable limit cycle and a stable positive equilibrium point is an important fact for ecologists to be aware of the kind of bistability shown here. So, these models are undoubtedly rather sensitive to disturbances and require careful management in applied contexts of conservation and fisheries. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Assuming that the prey refuge is proportional to the prey density if its population size is below a critical threshold, or constant if its size is above the threshold, this paper proposes, and qualitatively analyzes, a Leslie–Gower predator–prey model assuming alternative feeding and harvesting in predators, and a Holling II function as the predator functional response. From the results of the mathematical analysis to the predator–prey models with proportional or constant prey refuge, the proposed model retains the same bifurcation cases obtained for each model analyzed. However, appropriate alterations of the parameters representing the critical threshold of prey population size and harvest in predators allows the formation of at least one limit cycle, stable or unstable, that lives in both vector fields of the proposed model.  相似文献   

6.
The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov–Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov–Takens bifurcation curves, which are important for making strategies for controlling a disease.  相似文献   

7.
The global dynamics of an SIRS model with a nonlinear incidence rate is investigated. We establish a threshold for a disease to be extinct or endemic, analyze the existence and asymptotic stability of equilibria, and verify the existence of bistable states, i.e., a stable disease free equilibrium and a stable endemic equilibrium or a stable limit cycle. In particular, we find that the model admits stability switches as a parameter changes. We also investigate the backward bifurcation, the Hopf bifurcation and Bogdanov–Takens bifurcation and obtain the Hopf bifurcation criteria and Bogdanov–Takens bifurcation curves, which are important for making strategies for controlling a disease.  相似文献   

8.
Based on the theoretical framework of adaptive dynamics, the evolution of the predator-prey model with functional response of group defense effect on the predator handling time, was investigated. Firstly, in view of the interaction of predator populations with interspecific competition, the evolutionary conditions for a single predator population to split into 2 populations with different strategies through evolutionary branching were given. Secondly, when the ecological equilibrium of the model is unstable and the system has a limit cycle, the population will have strong coexistence under large mutation, but this coexistence will be evolutionarily unstable. Finally, the conclusions for the model with Holling-Ⅱ type functional response were compared. The results indicate that, with a sufficiently large prey carrying capacity, group defense effects can evolutionarily lead to the extinction of predators. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

9.
In this paper, we consider a predator–prey model with herd behavior and prey‐taxis subject to the homogeneous Neumann boundary condition. First, by analyzing the characteristic equation, the local stability of the positive equilibrium is discussed. Then, choosing prey‐tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of nonconstant solutions bifurcating from the positive equilibrium by an abstract bifurcation theory, and find the stable bifurcating solutions near the bifurcation point under suitable conditions. We have shown that prey‐taxis can destabilize the uniform equilibrium and yields the occurrence of spatial patterns. Furthermore, some numerical simulations to illustrate the theoretical analysis are also carried out, Turing patterns such as spots pattern, spots–strip pattern, strip pattern, stable nonconstant steady‐state solutions, and spatially inhomogeneous periodic solutions are obtained, which also expand our theoretical results.  相似文献   

10.
Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey–predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction–advection–diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling–Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the \(2\times 2\) prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.  相似文献   

11.
A delayed predator–prey system with Holling type II functional response and stage structure for both the predator and the prey is investigated. By analyzing the corresponding characteristic equations, the local stability of each feasible equilibrium of the system is discussed, and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory for infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using suitable Lyapunov functions and the LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator–extinction equilibrium and the coexistence equilibrium do not exist, and that the predator–extinction equilibrium is globally stable when the coexistence equilibrium does not exist. Further, sufficient conditions are obtained for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A modified Leslie–Gower-type prey–predator model composed of a logistic prey with Holling’s type II functional response is studied. The axial point (1, 0) is found to be globally asymptotically stable in a domain. Condition for stability of the non-trivial equilibrium point is obtained. The existence of stable limit cycle of the system is also established. The analysis for Hopf bifurcation is carried out. The numerical simulations are carried out to study the effects of seasonally varying parameters of the model. The system shows the rich dynamic behavior including bifurcation and chaos.  相似文献   

13.
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.  相似文献   

14.
In this paper, We investigate Hopf-zero bifurcation with codimension 2 in a delayed predator-prey model with dormancy of predators. First we prove the specific existence condition of the coexistence equilibrium. Then we take the mortality rate and time delay as two bifurcation parameters to find the occurrence condition of Hopf-zero bifurcation in this model. Furthermore, using the Faria and Magalhases normal form method and the center manifold theory, we obtain the third order degenerate normal form with two original parameters. Finally, through theoretical analysis and numerical simulations, we give a bifurcation set and a phase diagram to show the specific relations between the normal form and the original system, and explain the coexistence phenomena of several locally stable states, such as the coexistence of multi-periodic orbits, as well as the coexistence of a locally stable equilibrium and a locally stable periodic orbit.  相似文献   

15.
In this paper we consider a nutrient–phytoplankton–zooplankton model in aquatic environment and study its global dynamics. The existence and stability of equilibria are analyzed. It is shown that the system is permanent as long as the coexisting equilibrium exists. The discontinuous Hopf and classical Hopf bifurcations of the model are analytically verified. It is shown that phytoplankton bloom may occur even if the input rate of nutrient is low. Numerical simulations reveal the existence of saddle-node bifurcation of nonhyperbolic periodic orbit and subcritical discontinuous Hopf bifurcation, which presents a bistable phenomenon (a stable equilibrium and a stable limit cycle).  相似文献   

16.
A stage-structured predator–prey system with Holling type-II functional response and time delay due to the gestation of predator is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. By means of the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle invariant principle, it is shown that the trivial equilibrium is globally stable when both the predator-extinction equilibrium and the coexistence equilibrium are not feasible, and that the predator-extinction equilibrium is globally asymptotically stable if the coexistence equilibrium does not exist, and sufficient conditions are derived for the global stability of the coexistence equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.  相似文献   

17.
We study pattern formations in a predator–prey model with prey‐taxis. It is proved that a branch of nonconstant solutions can bifurcate from the positive equilibrium only when the chemotactic is repulsive. Furthermore, we find the stable bifurcating solutions near the bifurcation point under suitable conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.

The objective is the study of the dynamics of a prey–predator model where the prey species can migrate between two patches. The specialist predator is confined to the first patch, where it consumes the prey following the simple law of mass action. The prey is further “endangered” in that it suffers from the strong Allee effect, assumed to occur due to the lowering of successful matings. In the second patch the prey grows logistically. The model is formulated in a comprehensive way so as to include specialist as well as generalist predators, as a continuum of possible behaviors. This model described by a set of three ordinary differential equation is an extension of some previous models proposed and analysed in the literature on metapopulation models. The following analysis issues will be addressed: boundedness of the solution, equilibrium feasibility and stability, and dynamic behaviour dependency of the population and environmental parameters. Three types for both equilibria and limit cycles are possible: trivial, predator-free and coexistence. Classical analysis techniques are used and also theoretical and numerical bifurcation analysis. Besides the well-known local bifurcations, also a homoclinic connection as a global bifurcation is calculated. In view of the difficulty in the analysis, only the specialist case will be analysed. The obtained results indicate that the safe harbor can protect the endangered species under certain parametric restrictions.

  相似文献   

19.
Stage-structured predator–prey models exhibit rich and interesting dynamics compared to homogeneous population models. The objective of this paper is to study the bifurcation behavior of stage-structured prey–predator models that admit stage-restricted predation. It is shown that the model with juvenile-only predation exhibits Hopf bifurcation with the growth rate of the adult prey as the bifurcation parameter; also, depending on parameter values, a stable limit cycle will emerge, that is, the bifurcation will be of supercritical nature. On the other hand, the analysis of the model with adult-stage predation shows that the system admits a fold-Hopf bifurcation with the adult growth rate and the predator mortality rate as the two bifurcation parameters. We also demonstrate the existence of a unique limit cycle arising from this codimension-2 bifurcation. These results reveal far richer dynamics compared to models without stage-structure. Numerical simulations are done to support analytical results.  相似文献   

20.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号