首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A singular integral equation containing the crack opening displacement (COD) is developed for solving plane elasticity problems. The crack may contain any number of kinks at different intervals and orientations, such as a saw-tooth shape. Cracks in the form of a sine wave can also be treated. The crack tip stress intensity factors are evaluated for a variety of crack shapes and the results are displayed graphically. The distance between the crack tips is found to be a dominant factor on the crack tip stress intensity while the angle between the tangent to the crack tip and load direction determines the proportion of Mode I and II stress intensity factors.  相似文献   

2.
Stress intensity factors are important in the analysis of cracked materials. They are directly related to the fracture propagation and fatigue crack growth criteria. Based on the analytical solution (Crouch, S.L., 1976. Solution of plane elasticity problems by displacement discontinuity method, Int. J. Numer. Methods Eng. 10, pp. 301–343; Crouch, S.L., Starfield, A.M., 1983. Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics, London, Geore Allon and Unwin, Bonton, Sydney) to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid, recently, the crack-tip displacement discontinuity element which can be classified as the left and right crack-tip displacement discontinuity elements are developed by the author Yan, X., (in press. A special crack-tip displacement discontinuity element, Mechanics Research Communications) to model the crack-tip fields to more accurately compute the stress intensity factors of cracks in general plane elasticity. In the boundary element implementation the left or the right crack-tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. To prove further the efficiency of the suggested approach and provide more results of the stress intensity factors, in this study, analysis of an asymmetric branched crack bifurcated from a main crack in plane extension is carried out.  相似文献   

3.
The stress fields in an infinite plane containing Volterra type climb and glide edge dislocations under time-harmonic excitation are derived. The dislocation solutions are utilized to formulate integral equations for dislocation density functions on the surfaces of smooth cracks. The integral equations are of Cauchy singular type which are solved numerically for several different cases of crack configurations and arrangements. The results are used to evaluate modes I and II stress intensity factors for multiple smooth cracks.  相似文献   

4.
Kharkov Aviation Institute. Translated from Prikladnaya Mekhanika, Vol. 25, No. 8, pp. 105–111, August, 1989.  相似文献   

5.
Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.  相似文献   

6.
A system of singular integr Differential equations is derived for the plane problem of steady-state filtration in a plate cut by a system of cracks. We consider an arbitrary set of cracks, and also monoperiodic and biperiodic systems of cracks, in an infinite plane. In the case of a system of infinite parallel rectilinear cracks, the general solution is obtained in explicit form-in quadratures. As an example, we find the complex potential and the formula for the output from a borehole for a linear system of tiered, flooded plates, cut by a system of rectilinear parallel cracks.  相似文献   

7.
8.
应用Faber级数展开和各向异性体平面问题复应力函数的方法,对于含有任意个椭圆孔或裂纹的正交异性平面,给出了孔周应力场解或孔附近裂纹应力强度因子解,其特例与前人结果一致.  相似文献   

9.
Use of the fact that a singular operator transforms a polynomial again into a polynomial permitted obtaining substantially new results in [1], devoted to wing theory. This property of singular operators is used to solve the plane problem of elasticity theory for a plane weakened by cracks. The criterion for the beginning of crack growth is related in the linear theory of fracture to the stress-intensity factor at its end. An investigation of the influence of the mutual arrangement of cracks on the intensity factor is of considerable interest. The intensity factor is zero in the stretching of a plane weakened by a longitudinal slit, but this factor grows in the presence of a transverse slit and may even exceed the intensity factor at the end of the transverse slit. In this case stratification of the material, the development of cracks located along the loading line, starts. Fractures of this kind have been observed in experiments. To solve the problem of determining the stress-intensity factor at the end of a longitudinal crack in the presence of a transverse crack, the consideration of a periodic system of longitudinal-transverse cracks turns out to be effective. Introduction of symmetry simplifies the construction of the solution of the problem, on the one hand, and is a good approximation to the problem of the mutual influence of two cracks for a sufficient mutual removal of the slits, on the other.  相似文献   

10.
Khar'kov Highway Institute. Translated from Prikladnaya Mekhanika, Vol. 28, No. 3, pp. 43–46, March, 1992.  相似文献   

11.
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.  相似文献   

12.
13.
14.
In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.  相似文献   

15.
The complex variable function method is used to formulate the multiple curved crack problems into hypersingular integral equations. These hypersingular integral equations are solved numerically for the unknown function, which are later used to find the stress intensity factor, SIF, for the problem considered. Numerical examples for double circular arc cracks are presented.  相似文献   

16.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

17.
Institute of Applied Mechanics and Mathematics Problems, Academy of Sciences of the Ukrainian SSR, L'vov. Translated from Prikladnaya Mekhanika, Vol. 24, No. 3, pp. 22–28, March, 1988.  相似文献   

18.
19.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric material plane subjected to anti-plane shear stress loading were studied by the Schmidt method. The problem was formulated through Fourier transform into dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relation between the electric field and the stress field near the crack tips was obtained. The results show that the stress and the electric displacement intensity factors at the crack tips depend on the lengths and spacing of the cracks. It is also revealed that the crack shielding effect presents in piezoelectric materials.  相似文献   

20.
S. P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kiev. Poltava Agricultural Institute, Poltava. Translated from Prikladnaya Mekhanika, Vol. 31, No. 11, pp. 90–96, November, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号