首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The vibrational relaxation of oxygen molecular ions trapped in an argon cage in the temperature range 10-85 K has been studied using semiclassical procedures. The collision model is based on the trapped molecule undergoing the restricted motions (local translation and hindered rotation) in a cage formed by its 12 nearest argon neighbors in a face-centered cubic arrangement. At 85 K in the liquid argon temperature range, the relaxation rate constant of O2(-) (v=1) is 1130 s(-1). The rate constant decreases to 270 s(-1) at 50 K and to 3.90 s(-1) at 10 K in the solid argon temperature range. In the range 10-85 K, the rate constant closely follows the temperature dependence k proportional to T2.7. Energy transfer pathways for the trapped molecular ion are vibration to local translation, argon phonon modes, and rotation (both hindered and free).  相似文献   

2.
The vibrational relaxation of hydroxyl radicals in the A (2)Sigma(+) (v=1) state has been studied using the semiclassical perturbation treatment at cryogenic temperatures. The radical is considered to be trapped in a closest packed cage composed of the 12 nearest argon atoms and undergoes local translation and hindered rotation around the cage center. The primary relaxation pathway is towards local translation, followed by energy transfer to rotation through hindered-to-free rotational transitions. Free-to-free rotational transitions are found to be unimportant. All pathways are accompanied by the propagation of energy to argon phonon modes. The deexcitation probability of OH(v=1) is 1.3 x 10(-7) and the rate constant is 4.7 x 10(5) s(-1) between 4 and 10 K. The negligible temperature dependence is attributed to the presence of intermolecular attraction (>kT) in the guest-host encounter, which counteracts the T(2) dependence resulting from local translation. Calculated relaxation time scales are much shorter than those of homonuclear molecules, suggesting the importance of the hindered and free motions of OH and strong guest-host interactions.  相似文献   

3.
The energy transfer of highly excited ozone molecules is investigated by means of classical trajectories. Both intramolecular energy redistribution and the intermolecular energy transfer in collisions with argon atoms are considered. The sign and magnitude of the intramolecular energy flow between the vibrational and the rotational degrees of freedom crucially depend on the projection K(a) of the total angular momentum of ozone on the body-fixed a axis. The intermolecular energy transfer in single collisions between O(3) and Ar is dominated by transfer of the rotational energy. In accordance with previous theoretical predictions, the direct vibrational de-excitation is exceedingly small. Vibration-rotation relaxation in multiple Ar+O(3) collisions is also studied. It is found that the relaxation proceeds in two clearly distinguishable steps: (1) During the time between collisions, the vibrational degrees of freedom are "cooled" by transfer of energy to rotation; even at low pressure equilibration of the internal energy is slow compared to the time between collisions. (2) In collisions, mainly the rotational modes are "cool" by energy transfer to argon.  相似文献   

4.
Four-wave mixing measurements are carried out on I(2)-doped ice, prepared by quench condensing the premixed vapor at 128 K. Coherent vibrational dynamics is observed in two distinct ensembles. The first is ascribed to trapping in asymmetric polar cages in which, as in water, the valence absorption of the molecule is blueshifted by 3500 cm(-1), predissociation of the B state is complete upon the first extension of the molecular bond, and the vibrational frequency in the ground state (observed through coherent anti-Stokes Raman scattering) is reduced by 6.5%. The effect is ascribed to polarization of the molecule. The implied local field and the ionicity of the molecule are extracted, to conclude that the molecule is oxygen bonded to one water molecule on one side and hydrogen bonded on the other side. The second ensemble is characterized by the transient grating signal, which shows coherent vibrational dynamics on the B state. The small predissociation rate in this site suggests a symmetric cage in which the local electric field undergoes effective cancellation; and consistent with this, the extracted blueshift of the valence transition in this site (approximately 1500 cm(-1)) coincides with that observed in clathrate hydrates of iodine. Remarkably, in this site, the vibrational period of the B state packet coherently stretches from an initial value of 245 fs to 325 fs in the course of five oscillations (1.3 ps), indicative of vibrationally adiabatic following of the cage expansion. The dynamics is characteristic of a molecule trapped in a tight symmetric cage, with a soft cage coordinate that relaxes without eliciting elastic response. Enclathration in low-density amorphous ice is concluded.  相似文献   

5.
The vibrational and rotational mode-specific relaxations of CH3NO2 with 50 kcal/mol of initial internal energy in an argon bath is computed at 300 K at pressures of 10-400 atm. This work uses archived information from our previously published [J. Chem. Phys. 142, 014303 (2015)] molecular dynamics simulations and employs our previous published [J. Chem. Phys. 151, 034303 (2019)] method for projecting time-dependent Cartesian velocities onto normal mode eigenvectors. The computed relaxations cover three types of energies: vibrational, rotational, and Coriolis. In general, rotational and Coriolis relaxations in all modes are initially fast followed by an orders of magnitude slower relaxation. For all modes, that slower relaxation rate is approximately comparable to the vibrational relaxation rate. For all three types of energies, there are small-scale mode-to-mode variations. Of particular prominence is the exceptionally fast relaxation shared in common by the external rotation about the C N axis, the internal hindered rotation of the CH3 group relative to the NO2 group, and the symmetric stretch of the CH3 group.  相似文献   

6.
A computational model is used to quantify the evolution of quantum state populations as highly vibrationally excited (14)N(2) ((14)N(2)?) equilibrates in various bath gases. Multicollision energy disposal follows general principles established in related single collision processes. Thus when state-to-state routes permit, maximum amounts of energy are deposited into partner species by direct vibration-to-vibration (V-V) exchange. When these pathways are absent, e.g., when Ar is the bath species, relaxation is very slow and multistaged. Conversely, in a bath of v = 0 (14)N(2) molecules, 16 vibrational quanta (Δv = ± 8) are resonantly exchanged from (v;j) = (8;10) with vibrational equilibration so rapid that rotation and translation still lag far behind after 1000 collisions. Near-resonant V-V exchange dominates the initial phase when (15)N(2) forms the bath gas and although some rotational warming occurs, vibrational modes remain decoupled from, and significantly hotter than, the low heat capacity modes. These forms of behavior seem likely to characterize excited and bath species that have closely similar vibration and rotation constants. More generic in nature is (14)N(2) in O(2) or in a mixture that closely resembles air. Here, asymmetric V-V exchange is a dominant early feature in ensemble evolution but energy differences in the key vibration and rotation quanta lead to V-V energy defects that are compensated for by the low energy modes. This results in much more rapid ensemble equilibration, generally within 400-500 collisions, when O(2) is present even as a minor constituent. Our results are in good general agreement with those obtained from experimental studies of N(2) plasmas both in terms of modal temperatures and initial (first collision cycle) cross-sections.  相似文献   

7.
The time constant for the collisional deactivation of the υ = 1 vibrational level of N2 is found to be 1.5 ± 0.5 s in liquid nitrogen of 99.9995% purity of 78 K. This result is consistent with a simple binary collision theory of vibrational relaxation for liquids.  相似文献   

8.
The caging effect of the host environment on photochemical reactions of molecular oxygen is investigated using monochromatic synchrotron radiation and spectrally resolved fluorescence. Oxygen doped clusters are formed by coexpansion of argon and oxygen, by pickup of molecular oxygen or by multiple pickup of argon and oxygen by neon clusters. Sequential pickup provides radially ordered core-shell structures in which a central oxygen molecule is surrounded by argon layers of variable thickness inside large neon clusters. Pure argon and core-shell argon-neon clusters excited with approximately 12 eV monochromatic synchrotron radiation show strong fluorescence in the vacuum ultraviolet (vuv) spectral range. When the clusters are doped with O2, fluorescence in the visible (vis) spectral range is observed and the vuv radiation is found to be quenched. Energy-resolved vis fluorescence spectra show the 2 1Sigma+-->1 1Sigma+(ArO(1S)-->ArO(1D)) transition from argon oxide as well as the vibrational progression A '3Delta u(nu'=0)-->X 3Sigmag*(nu") of O2 indicating that molecular oxygen dissociates and occasionally recombines depending on the experimental conditions. Both the emission from ArO and O2 as well the vuv quenching by oxygen are found to depend on the excitation energy, providing evidence that the energy transfer from the photoexcited cluster to the embedded oxygen proceeds via the O2+ ground state. The O2+ decays via dissociative recombination and either reacts with Ar resulting in electronically excited ArO or it recombines to O2 within the Ar cage. Variation of the Ar layer thickness in O2-Ar-Ne core-shell clusters shows that a stable cage is formed by two solvation layers.  相似文献   

9.
The dynamics of vibrational energy relaxation (VER) of the aqueous azide anion was studied over a wide temperature (300 K ≤ T ≤ 663 K) and density (0.6 g cm(-3) ≤ ρ ≤ 1.0 g cm(-3)) range thereby covering the liquid and the supercritical phase of the water solvent. Femtosecond mid-infrared spectroscopy on the ν(3) band associated with the asymmetric stretching vibration of the azide anion was used to monitor the relaxation dynamics in a time-resolved fashion. The variation of the vibrational relaxation rate constant with temperature and density was found to be rather small. Surprisingly, the simple isolated binary collision model is able to fully reproduce the experimentally observed temperature and density dependence of the relaxation rate provided a local density correction around the vibrationally excited solute based on classical molecular dynamics simulations is used. The simulations further suggest that head-on collisions of the solvent with the terminal nitrogen atoms rather than side-on collisions with the central nitrogen atom of the azide govern the vibrational energy relaxation of this system. Finally, the importance of hydrogen bonding for the VER dynamics in this system is briefly discussed.  相似文献   

10.
Hydrogen atoms encapsulated in molecular cages are potential candidates for quantum computing applications. They provide the simplest two-spin system where the 1s electron spin, S = 1/2, is hyperfine-coupled to the proton nuclear spin, I = 1/2, with a large isotropic hyperfine coupling (A = 1420.40575 MHz for a free atom). While hydrogen atoms can be trapped in many matrices at cryogenic temperatures, it has been found that they are exceptionally stable in octasilsesquioxane cages even at room temperature [Sasamori et al., Science, 1994, 256, 1691]. Here we present a detailed spin-lattice and spin-spin relaxation study of atomic hydrogen encapsulated in Si(8)O(12)(OSiMe(2)H)(8) using X-band pulsed EPR spectroscopy. The spin-lattice relaxation times T(1) range between 1.2 s at 20 K and 41.8 μs at room temperature. The temperature dependence of the relaxation rate shows that for T < 60 K the spin-lattice relaxation is best described by a Raman process with a Debye temperature of θ(D) = 135 K, whereas for T > 100 K a thermally activated process with activation energy E(a) = 753 K (523 cm(-1)) prevails. The phase memory time T(M) = 13.9 μs remains practically constant between 200 and 300 K and is determined by nuclear spin diffusion. At lower temperatures T(M) decreases by an order of magnitude and exhibits two minima at T = 140 K and T = 60 K. The temperature dependence of T(M) between 20 and 200 K is attributed to dynamic processes that average inequivalent hyperfine couplings, e.g. rotation of the methyl groups of the cage organic substituents. The hyperfine couplings of the encapsulated proton and the cage (29)Si nuclei are obtained through numerical simulations of field-swept FID-detected EPR spectra and HYSCORE experiments, respectively. The results are discussed in terms of existing phenomenological models based on the spherical harmonic oscillator and compared to those of endohedral fullerenes.  相似文献   

11.
In this work we demonstrate vibrational spectroscopy of polyatomic ions that are trapped and sympathetically cooled by laser-cooled atomic ions. We use the protonated dipeptide tryptophan-alanine (HTyrAla(+)) as a model system, cooled by barium ions to less than 800 mK secular temperature. The spectroscopy is performed on the fundamental vibrational transition of a local vibrational mode at 2.74 μm using a continuous-wave optical parametric oscillator (OPO). Resonant IR multi-photon dissociation spectroscopy (R-IRMPD) (without the use of a UV laser) generates charged molecular fragments, which are sympathetically cooled and trapped, and subsequently released from the trap and counted. We measured the cross section for R-IRMPD under conditions of low intensity, and found it to be approximately two orders smaller than the vibrational excitation cross section. The observed rotational bandwidth of the vibrational transition is larger than the one expected from the combined effects of 300 K black-body temperature, conformer-dependent line shifts, and intermolecular vibrational relaxation broadening (J. Stearns et al., J. Chem. Phys., 2007, 127, 154322-154327). This indicates that as the internal energy of the molecule grows, an increase of the rotational temperature of the molecular ions well above room temperature (up to on the order of 1000 K), and/or an appreciable shift of the vibrational transition frequency (approx. 6-8 cm(-1)) occurs.  相似文献   

12.
The rate of detrapping of atomic hydrogen from several octasilsesquioxanes is the same for dissolved and solid samples and is independent of the presence of other species such as free radicals or oxygen; varying the cage substituents leads to only minor differences in the activation parameters. Hydrogen atoms are found to be more strongly stabilized in homosubstituted octasilsesquioxanes compared with singly Ge-substituted cages. A kinetic isotope effect observed for the detrapping of H and D from MeT(8) is ascribed to the difference in the zero-point energies of the trapped atoms. There is a secondary H/D isotope effect in the temperature dependence of the (29)Si-superhyperfine splitting constants in the range 228-353 K. Cage relaxation has a substantial effect on the detrapping barrier but little influence on the intracage potential. Calculations using a rigid cage approximation give satisfactory agreement with zero-point parameters extracted from experimental data. Different model chemistries yield qualitatively different pictures of the dependence of the hyperfine coupling constant of the trapped H atom upon the detrapping coordinate. Within an isotropic approximation of the vibrational displacements, the B3LYP data give fairly close agreement with the experimental temperature dependence, subject to a shift of the absolute value related to known weaknesses of the method. For the Si(7)Ge cage, it is found that the transition state in which the H atom passes through a Ge-containing face is strongly favored, accounting for the larger detrapping rate parameters observed experimentally for this species.  相似文献   

13.
In a combined experimental-theoretical study, we investigated the transport of vibrational energy from the surrounding solvent into the interior of a heme protein, the sperm whale myoglobin double mutant L29W-S108L, and its dependence on temperature from 20 to 70 K. The hindered libration of a CO molecule that is not covalently bound to any part of the protein but is trapped in one of its binding pockets (the Xe4 pocket) was used as the local thermometer. Energy was deposited into the solvent by IR excitation. Experimentally, the energy transfer rate increased from (30 ps)(-1) at 20 K to (8 ps)(-1) at 70 K. This temperature trend is opposite to what is expected, assuming that the mechanism of heat transport is similar to that in glasses. In order to elucidate the mechanism and its temperature dependence, nonequilibrium molecular dynamics (MD) simulations were performed, which, however, predicted an essentially temperature-independent rate of vibrational energy flow. We tentatively conclude that the MD potentials overestimate the coupling between the protein and the CO molecule, which appears to be the rate-limiting step in the real system at low temperatures. Assuming that this coupling is anharmonic in nature, the observed temperature trend can readily be explained.  相似文献   

14.
A series of time-resolved IR-IR double-resonance experiments have been conducted where methane molecules are excited into a selected rovibrational level of the 2nu3(F2) vibrational substate of the tetradecad and where the time evolution of the population of the various energy levels is probed by a tunable continuous wave laser. The rotational relaxation and vibrational energy transfer processes occurring in methane upon inelastic CH4-H2 and CH4-He collisions have been investigated by this technique at room temperature and at 193 K. By probing transitions in which either the lower or the upper level is the laser-excited level, rotational depopulation rates in the 2nu3(F2) substate were measured. The rate constants for CH4-H2 collisions were found to be 17.7 +/- 2.0 and 18.9 +/- 2.0 micros(-1) Torr(-1) at 296 and 193 K, respectively, and for CH(4)-He collisions they are 12.1 +/- 1.5 and 16.0 +/- 2.0 micros(-1) Torr(-1) at the same temperatures. The vibrational relaxation was investigated by probing other stretching transitions such as 2nu3(F2) - nu3, nu3 + 2nu4 - 2nu4, and nu3 + nu4 - nu4. A kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), that has been developed to describe the various relaxation pathways allowed us to calculate the temporal evolution of populations in these levels and to simulate double-resonance signals. The different rate coefficients of the vibrational relaxation processes involved in these mixtures were determined by fitting simulated signals to the observed signals corresponding to assigned transitions. For vibration to translation energy transfer processes, hydrogen is a much more efficient collision partner than helium, nitrogen, or methane itself at 193 K as well as at room temperature.  相似文献   

15.
A semiclassical version of the quantum coupled-states approximation for the vibrational relaxation of diatomic molecules in collisions with monatomic bath gases is presented. It is based on the effective mass approximation and a recovery of the semiclassical Landau exponent from the classical Landau-Teller collision time. For an interaction with small anisotropy, the Landau exponent includes first order corrections with respect to the orientational dependence of the collision time and the effective mass. The relaxation N(2)(v=1)-->N(2)(v=0) in He is discussed as an example. Employing the available vibrationally elastic potential, the semiclassical approach describes the temperature dependence of the rate constant k(10)(T) over seven orders of magnitude across the temperature range of 70-3000 K in agreement with experimental data and quantum coupled-states calculations. For this system, the hierarchy of corrections to the Landau-Teller conventional treatment in the order of importance is the following: quantum effects in the energy release, dynamical contributions of the rotation of N(2) to the vibrational transition, and deviations of the interaction potential from a purely repulsive form. The described treatment provides significant simplifications over complete coupled-states calculations such that applications to more complex situations appear promising.  相似文献   

16.
The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.  相似文献   

17.
We have measured the temperature dependence of the infrared spectra of a hydrogen molecule trapped inside a C(60) cage, H(2)@C(60), in the temperature range from 6 to 300 K and analyzed the excitation spectrum by using a five-dimensional model of a vibrating rotor in a spherical potential. The electric dipole moment is induced by the translational motion of endohedral H(2) and gives rise to an infrared absorption process where one translational quantum is created or annihilated, ΔN = ±1. Some fundamental transitions, ΔN = 0, are observed as well. The rotation of endohedral H(2) is unhindered but coupled to the translational motion. The isotropic and translation-rotation coupling part of the potential are anharmonic and different in the ground and excited vibrational states of H(2). The vibrational frequency and the rotational constant of endohedral H(2) are smaller than those of H(2) in the gas phase. The assignment of lines to ortho- and para-H(2) is confirmed by measuring spectra of a para enriched sample of H(2)@C(60) and is consistent with the earlier interpretation of the low temperature infrared spectra [Mamone et al., J. Chem. Phys. 130, 081103 (2009)].  相似文献   

18.
The homogeneous line shape of vibrational transitions of matrix isolated molecules is calculated in the Debye approximation for lattice vibrations. The interaction between matrix and molecule is assumed anharmonic and expressed in space time phonon correlation functions. Excluding local modes and libration of the molecule, analytical expressions for the temperature dependence of line width and line shift are derived which permit verification by experiment.  相似文献   

19.
Rate coefficients were calculated for vibrational relaxation and collision-induced dissociation of ground state xenon fluoride in neon at temperatures between 300 and 1000 K for each of nine vibrational levels. These coefficients were calculated using a pairwise additive potential energy surface, which consists of a Morse function for the XeF interaction and Lennard–Jones functions for the NeXe and NeF interactions. Rate coefficients are provided for both temperature and v- dependences. The vibrational relaxation and dissociation processes occur by multiquanta transitions. Dissociation can take place from all v-levels provided that the internal energy of the XeF molecule is close to the rotationless dissociation limit. The order of increase effectiveness of the various forms of energy in promoting dissociation in XeF was found to be translation–rotation-vibration. At room temperature, neon atoms were found to be more efficient than helium atoms in the dissociation processes; helium atoms were found to be more efficient than neon atoms in the vibrational relaxation of XeF. Strong vibration–rotation coupling in both vibrational relaxation and in the dissociation processes is demonstrated.  相似文献   

20.
Spin-polarized echo-detected electron paramagnetic resonance (EPR) spectra and the transversal relaxation rate T2(-1) of the photoexcited triplet state of fullerene C60 molecules were studied in o-terphenyl, 1-methylnaphthalene, and decalin glassy matrices. The model is composed of a fast (correlation time approximately 10(-12) s) pseudorotation of (3)C60 in a local anisotropic potential created by interaction of the fullerene molecule with the surrounding matrix molecules. In simulations, this potential is assumed to be axially symmetric around some axis of a preferable orientation in a matrix cage. The fitted value of the potential was found to depend on the type of glass and to decrease monotonically with a temperature increase. A sharp increase of the T2(-1) temperature dependence was found near 240 K in glassy o-terphenyl and near 100 K in glassy 1-methylnaphthalene and decalin. This increase probably is related to the influence on the pseudorotation of the onset of large-amplitude vibrational molecular motions (dynamical transition in glass) that are known for glasses from neutron scattering and molecular dynamics studies. The obtained results suggest that molecular and spin dynamics of the triplet fullerene are extremely sensitive to molecular motions in glassy materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号