首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Plasmon‐mediated carrier transfer (PMCT) at metal–semiconductor heterojunctions has been extensively exploited to drive photochemical reactions, offering intriguing opportunities for solar photocatalysis. However, to date, most studies have been conducted using noble metals. Inexpensive materials capable of generating and transferring hot carriers for photocatalysis via PMCT have been rarely explored. Here, we demonstrate that the plasmon excitation of nickel induces the transfer of both hot electrons and holes from Ni to TiO2 in a rationally designed Ni–TiO2 heterostructure. Furthermore, it is discovered that the transferred hot electrons either occupy oxygen vacancies (VO) or produce Ti3+ on TiO2, while the transferred hot holes are located on surface oxygens at TiO2. Moreover, the transferred hot electrons are identified to play a primary role in driving the degradation of methylene blue (MB). Taken together, our results validate Ni as a promising low‐cost plasmonic material for prompting visible‐light photochemical reactions.  相似文献   

2.
以电纺TiO_2纳米纤维为基质,采用一步水热法合成了Bi@Bi_2Sn_2O_7/TiO_2等离子体复合纤维光催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和光致发光光谱(PL)等分析测试手段对样品的物相、形貌和光电性能等进行表征。以三乙醇胺为电子给体,研究了Bi@Bi_2Sn_2O_7/TiO_2复合纤维光催化裂解水制氢的反应过程。结果表明:在水热过程中,Bi_2Sn_2O_7构筑在TiO_2纳米纤维表面形成p-n结的同时,部分Bi3+被葡萄糖还原成金属Bi沉积在Bi_2Sn_2O_7上。金属Bi的等离子体共振效应与p-n结的协同作用,有效提高了样品的光催化活性,产氢速率达到7.26 mmol·h~(-1)·g~(-1)。  相似文献   

3.
The novel, 1D semiconductor (H2NC4H8NCH2CH2NH2)(HNCH2CH2NH2)3Zn2Ge2Se8 has been synthesized under solvothermal conditions using N-(2-aminoethyl)piperazine as solvent and templating agent at 200 °C. The material was characterized by single crystal and powder X-ray diffraction, IR and Raman spectroscopy and thermogravimetric analysis. The compound consists of 1D anionic [Zn2Ge2Se8]4− chains made of alternating edge-shared [ZnSe4] and [GeSe4] tetrahedra that charged balanced by one N-(2-aminoethyl)piperazinium and three piperazinium cations. The optical properties were investigated with solid state UV–Vis/near IR spectroscopy and the results show that the solid is a medium gap semiconductor with an absorption edge at 1.8 eV.  相似文献   

4.
以水热法制备的20% g-C3N4/TiO2(20%为质量分数)为基,将其与不同质量分数的氧化石墨烯(GO)复合制备出可见光催化性能优良的GO/TiO2-g-C3N4三元复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、光致荧光光谱(PL)、瞬态光电流响应等分析测试手段对样品的结构、形貌和光电性能进行表征。研究了不同质量分数GO的加入对GO/TiO2-g-C3N4在可见光下降解亚甲基蓝(MB)溶液的影响。结果表明: g-C3N4/TiO2与GO复合后,锐钛矿相TiO2颗粒形成小团簇附着在g-C3N4和GO片层表面,且当GO含量为15%时,TiO2形成的团簇最小,对可见光的吸收最多且光生电子-空穴对的复合率最低。可见光照射下,15% GO/TiO2-g-C3N4复合材料对MB的降解率在3 h内可达98.4%,且其降解速率常数(0.022 4 min-1)分别是纯TiO2(0.001 5 min-1)和g-C3N4/TiO2(0.002 5 min-1)的15倍和9倍。  相似文献   

5.
The plasmon resonance of metal nanostructures affects neighboring semiconductors, quenching or enhancing optical transitions depending on various parameters. These plasmonic properties are currently investigated with respect to topics such as photovoltaics and optical detection and could also have important consequences for photocatalysis. Here the effect of silver nanoparticles of a size up to 30 nm and at maximum 0.50 monolayers on the photocatalytic oxidation of ethylene on TiO2 is studied. Since the plasmon resonance energy of silver nanoparticles is comparable with the TiO2 band gap, dipole-dipole interaction converts excitons into heat at the silver nanoparticle. This indicates that plasmonic interaction with TiO2 semiconductor catalysts can reduce the photo catalytic activity considerably.  相似文献   

6.
Precise manipulation of the reactive site spatial distribution in plasmonic metal/semiconductor photocatalysts is crucial to their photocatalytic performance, but the construction of Janus nanostructures through symmetry-breaking synthesis remains a significant challenge. Here we demonstrate a synthetic strategy for the selective growth of a CeO2 semi-shell on Au nanospheres (NSs) to fabricate Janus Au NS/CeO2 nanostructures with the assistance of a SiO2 hard template and autoredox reaction between Ag+ ions and a ceria precursor. The obtained Janus nanostructures possess a spatially separated architecture and exhibit excellent photocatalytic performance toward N2 photofixation under visible-light illumination. In this scenario, N2 molecules are reduced by hot electrons on the CeO2 semi-shell, while hole scavengers are consumed by hot holes on the exposed Au NS surface, greatly promoting the charge carrier separation. Moreover, the exposed Au NS surface in the Janus structures offers an additional opportunity for the fabrication of ternary Janus noble metal/Au NS/CeO2 nanostructures. This work highlights the genuine superiority of the spatially separated nanoarchitectures in the photocatalytic reaction, offering instructive guidance for the design and construction of novel plasmonic photocatalysts.

We demonstrate a synthetic strategy to selectively grow a CeO2 semi-shell on Au nanospheres through the symmetry-breaking synthesis. The asymmetric nanostructures facilitate the charge carrier separation during the visible-light N2 photofixation.  相似文献   

7.
以TiO2纳米管为模板,采用多组分自组装结合水热法制备Bi2WO6/TiO2纳米管异质结构复合材料。通过多种技术如X射线衍射(XRD),X射线光电子能谱(XPS),N2吸附-脱附,扫描电镜(SEM),高分辨透射电镜(HRTEM)和紫外可见漫反射吸收光谱(UV-Vis DRS)考察所制备样品的组成、结构、形貌、光吸收和电子性质。Bi2WO6纳米片或纳米粒子分布在TiO2纳米管上,形成异质结构。随后,通过在紫外、可见和微波辅助光催化模式下降解染料罗丹明B(RhB)来评价复合催化剂的光催化活性。与TiO2纳米管和Bi2WO6相比,Bi2WO6/TiO2-35纳米管在多模式下表现出更优异的光催化活性。与紫外和可见降解模式相比,Bi2WO6/TiO2-35纳米管在微波辅助光催化模式下对RhB的降解效率最高。这种增强的光催化活性源于适量Bi2WO6的引入、纳米管独特的形貌特征和降解模式所引起的增强的量子效率。降解过程中的活性物种被证明是h+,·OH和·O2-自由基。而且,在微波辅助光催化模式下,可产生更多的·OH和·O2-自由基。  相似文献   

8.
Ag/TiO2光催化还原硝酸氮   总被引:3,自引:0,他引:3  
利用化学还原法制备不同Ag掺杂量TiO2纳米催化剂,采用TEM、XRD、XRF和UV-Vis对催化剂进行表征。考察了催化剂在紫外光(254 nm)和可见光照射下还原初始浓度100 mgN·L-1水相硝酸氮的活性和效果。重点考察了紫外光照射下Ag掺杂量、不同空穴捕获剂(甲酸、甲醇、乙酸、乙醇、草酸、草酸钠等)及甲酸浓度对硝酸氮还原的影响;对硝酸氮转化率和总氮去除率、形成亚硝酸氮、氨氮浓度及氮气选择性的影响。甲酸浓度为0.030 mol·L-1、Ag掺杂量为1.0wt%时催化剂效果最佳。此时,硝酸氮、总氮的转化率分别为98.43%、78.13%;亚硝酸氮浓度为零,转化的硝酸氮中只有20.76%转化为氨氮,氮气选择性为79.24%。可见光下进行光催化还原反应时,硝酸氮转化率仅37.98%,但氮气的选择性较高。  相似文献   

9.
Na+ complex with the dibenzo-18-crown-6 ester was used as a template to synthesize mesoporous titanium dioxide with the specific surface area 130–140 m2/g, pore diameter 5–9 nm and anatase content 70–90%. The mesoporous TiO2 samples prepared were found to have photocatalytic activity in CuII, NiII and AgI reduction by aliphatic alcohols. The resulting metal–semiconductor nanostructures have remarkable photocatalytic activity in hydrogen evolution from water–alcohol mixtures, their efficiency being 50–60% greater than that of the metal-containing nano-composites based on TiO2 Degussa P25.The effects of the thermal treatment of mesoporous TiO2 upon its photocatalytic activity in hydrogen production were studied. The anatase content and pore size were found to be the basic parameters determining the photoreaction rate. The growth of the quantum yield of hydrogen evolution from TiO2/Ag0 to TiO2/Ni0 to TiO2/Cu0 was interpreted in terms of differences in the electronic interaction between metal nanoparticles and the semiconductor surface. It was found that there is an optimal metal concentration range where the quantum yield of hydrogen production is maximal. A decrease in the photoreaction rate at further increment in the metal content was supposed to be connected with the enlargement of metal nanoparticles and deterioration of the intimate electron interaction between the components of the metal–semiconductor nanocomposites.  相似文献   

10.
NH3 atmosphere in ball milling plays an important role in preparing TiO2−XNX by a simple mechanochemical reaction. The results show that the structure transformation of titania milled in NH3 is greatly delayed compared with that in air. The specific surface area of titania milled in NH3 for 2 h is two times larger than that in air. It was also found that titania prepared in NH3 has obvious absorbance for visible light. Mechanochemical milling in NH3 atmosphere offers a new route to prepare TiO2−XNX with high surface area.  相似文献   

11.
The multiple-photon dissociation of N2H4 and CH3NH2 by pulsed CO2 laser light to produce NH2(X?2BI has been studied using the laser-induced fluorescence detection method. The relative NH2 yield, represented by the fluorescence signal, has been measured as a function of the fluence from the threshold at about 0.1 J/cm2 to about 100 J/cm2, at different CO2-laser lines and at pressures down to 10?4 Torr.  相似文献   

12.
Sol-gel TiO2-CeO2 materials were synthesized at pH=3 employing HNO3 as hydrolysis agent. Gels were thermally treated at 473, 673, 873, and 1073 K, respectively. Morphologies of the final substrates were studied via N2 sorption, XRD and TEM. N2 isotherms indicated a steady porosity in TiO2-CeO2 samples treated up to 873 K. Adsorption-desorption isotherms and TEM micrographs were used to perform fractal analyses of annealed samples. A dominant anatase phase was detected by XRD between 473 and 873 K while a rutile phase was evident at 1073 K. The presence of cerium conferred an increased thermal stability to the TiO2 materials against particle sintering and pore collapse. The structure of cerium-doped anatase lattice was visualized through crystal simulation to investigate the possible substitution of Ti4+ by Ce+4 ions. This effect and the progressive segregation of CeO2 crystals with temperature on the surface of TiO2 grains lead to substrates of assorted morphologies.  相似文献   

13.
Influence of NH4F concentration on the conditions of separation of Ti(IV) and Fe(III) salts by fractional hydrolysis under the action of ammonia in the system (NH4)2TiF6-(NH4)3FeF6-NH4F-H2O was studied. The coprecipitation of (NH4)3TiO2F5 and (NH4)3FeF6 as a result of crystallochemical substitution of Fe+3 for Ti+4 makes it possible to reduce the content of Fe(III) salts in the system. After separation of a precipitate containing up to 25% of Ti from solutions with NH4F concentrations from 10.6 to 22.3% and subsequent hydrolysis, the remaining titanium precipitates. The precipitate is annealed up to 800°C in the presence of water vapor to form TiO2 with a whiteness above 92%. Original Russian Text ? N.G. Bakeeva, P.S. Gordienko, E.V. Pashnina, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 1, pp. 3–8.  相似文献   

14.
Electrochemical nitrogen fixation techniques have emerged as a promisingly sustainable approach to face the challenge associated with nitrogen activation of ammonia synthesis by the Haber–Bosch process under ambient conditions. Herein, the performance of electrocatalytic nitrogen reduction for the production of α-Fe2O3 nanospindles coated with mesoporous TiO2 with different crystallinity [denoted as α-Fe2O3@mTiO2-X (X=300, 400, and 500 °C)] were investigated. The as-prepared α-Fe2O3@mTiO2-400 composite exhibits a large NH3 yield (27.2 μg h−1 mgcat.−1) at −0. 5 V vs. the reversible hydrogen electrode and a high Faradaic efficiency (13.3 %) in 0.1 m Na2SO4, with excellent electrochemical durability. This work presents a novel avenue for the rational design of efficient unique hetero-phase nanocatalysts toward sustainable electrocatalytic N2 fixation.  相似文献   

15.
In this paper, mesoporous rod-like SiO2/TiO2 (m-SiO2/TiO2) and mesoporous sphere-like TiO2 (m-TiO2) have been prepared by using a new type Gemini surfactant containing carbonyl groups (GS-A, [(C n H2n + 1)(CH3)2N+(CH2)2-O2C-(CH2)4-CO2-(CH2)2N+(CH3)2(C n H2n + 1)] · 2Br, n = 12) as template at pH ∼ 6 at room temperature. The products are characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption-desorption. The results indicate that anatase TiO2 exists in both samples and m-SiO2/TiO2 has a higher surface area (741.13 m2/g) than m-TiO2. Moreover, as-synthesized samples show excellent photocatalytic activity for the degradation of methyl red under UV irradiation.  相似文献   

16.
Summary. 2 [Yb2(NH2)2(Pz)4][Yb(NH3)2(Pz)3 PzH], Pz = pyrazolate anion, PzH = pyrazole, C3H4N2 is obtained by the reaction of ytterbium metal with pyrazole in liquid ammonia and subsequent increase of the temperature to 200°C resulting in the formation of colorless single crystals of the compound. The X-ray single crystal analysis reveals that the structure consists of 2 [Yb2(NH2)2(Pz)4] planes with neutral [Yb(NH3)2(Pz)3 PzH] monomeric molecules that are located between the planes and ytterbium is trivalent. This is the first example of a two-dimensional network structure of an organic amine of the rare earth elements that derives from an electride induced synthesis. The product decomposes under release of ammonia outside its sealed reaction vessel, viz. if the NH3 pressure is removed.  相似文献   

17.
Yields of NH3 and N2H4 in radiation-catalytic reduction of N2 by means of a hydride complex of WIV with dppe in thf solution and in mixtures of thf with other solvents have been estimated. A mechanism proposed earlier of reduction of coordinated N2 has been confirmed and the role of solvent in reduction of N2 to NH3 and amines has been explained.  相似文献   

18.
Benefiting from the superior conductivity, rich surface chemistry and tunable bandgap, Ti3C2 MXene has become a frontier cocatalyst material for boosting the efficiency of semiconductor photocatalysts. It has been theoretically predicted to be an ideal material for N2 fixation. However, the realization of N2 photofixation with Ti3C2 as a host photocatalyst has so far remained experimentally challenging. Herein, we report on a sandwich-like plasmon- and an MXene-based photocatalyst made of Au nanospheres and layered Ti3C2, and demonstrate its efficient N2 photofixation in pure water under ambient conditions. The abundant low-valence Ti (Ti(4−x)+) sites in partially reduced Ti3C2 (r-Ti3C2) produced by surface engineering through H2 thermal reduction effectively capture and activate N2, while Au nanospheres offer plasmonic hot electrons to reduce the activated N2 into NH3. The Ti(4−x)+ active sites and plasmon-generated hot electrons work in tandem to endow r-Ti3C2/Au with remarkably enhanced N2 photofixation activity. Importantly, r-Ti3C2/Au exhibits ultrahigh selectivity without the occurrence of competing H2 evolution. This work opens up a promising route for the rational design of efficient MXene-based photocatalysts.

N2 photofixation in water is realized under ambient conditions using partially reduced Ti3C2 MXene that is interlaminated with Au nanospheres.  相似文献   

19.
2 [Yb2(NH2)2(Pz)4][Yb(NH3)2(Pz)3 PzH], Pz = pyrazolate anion, PzH = pyrazole, C3H4N2 is obtained by the reaction of ytterbium metal with pyrazole in liquid ammonia and subsequent increase of the temperature to 200°C resulting in the formation of colorless single crystals of the compound. The X-ray single crystal analysis reveals that the structure consists of 2 [Yb2(NH2)2(Pz)4] planes with neutral [Yb(NH3)2(Pz)3 PzH] monomeric molecules that are located between the planes and ytterbium is trivalent. This is the first example of a two-dimensional network structure of an organic amine of the rare earth elements that derives from an electride induced synthesis. The product decomposes under release of ammonia outside its sealed reaction vessel, viz. if the NH3 pressure is removed.  相似文献   

20.
本文概述了SnO2TiO2 复合半导体纳米薄膜的发展历史和研究现状,对比分析了“混合”、“核壳”和“叠层”3 种复合薄膜的结构和性能特点,着重论述了叠层结构的SnO2 /TiO2复合薄膜的光电化学和光催化特性。结合作者的研究工作,探讨了SnO2 /TiO2双层复合薄膜上下层厚度对其光催化活性的影响,指出复合薄膜光催化活性的提高可归因于电子从TiO2 向SnO2 的迁移。最后对SnO2 /TiO2复合薄膜的局限性和发展潜势做一简要分析,强调了该复合薄膜本身的应用特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号