首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity‐shaped hydrated electron state to a hydrated nucleobase (NB)‐bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron‐induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution‐structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120–200 fs in four aqueous NB solutions, depending on the electron‐binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*‐type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron‐binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure‐fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA‐damage mechanism in solution.  相似文献   

2.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

3.
High energy irradiation to the hydrogen bonded system is important in relevance with the initial process of DNA and enzyme damages. In the present study, the effects of radiation to catalytic triad have been investigated by means of direct ab‐initio molecular dynamics (AIMD) calculation. As a model of the catalytic triad, Ser‐His‐Glu residue, which is one of the important enzymes in the acylation reaction, was examined. The ionization and electron attachment processes in Ser‐His‐Glu were investigated as the radiation effects. The direct AIMD calculation showed that a proton of His is spontaneously transferred to carbonyl oxygen of Glu after the ionization. However, the whole structure of catalytic triad was essentially kept after the ionization. On the other hand, in the case of the electron capture in the model catalytic triad Ser‐His‐Glu, the dissociation of Glu residue from [Ser‐His]? was found as a product channel. The mechanism of ionization and electron capture process in the catalytic triad was discussed on the basis of theoretical results. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Upon excitation of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters, the electron transfers from the anionic precursor to the solvent, and then the excess electron is stabilized by polar solvent molecules. This process has been investigated using ab initio molecular dynamics (AIMD) simulations of excited states of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters. The AIMD simulation results of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) are compared, and they are found to be similar. Because the role of the halogen atom in the photoexcitation mechanism is controversial, we also carried out AIMD simulations for the ground-state bare excess electron -- water trimer [e(-)(H(2)O)(3)] at 300 K, the results of which are similar to those for the excited state of X(-)(H(2)O)(3) with zero kinetic energy at the initial excitation. This indicates that the rearrangement of the complex is closely related to that of e(-)(H(2)O)(3), whereas the role of the halide anion is not as important.  相似文献   

5.
步宇翔 《化学进展》2012,24(6):1094-1104
本文综述了离子型液体介质中过剩电子的结构、存在状态及其时间演化动力学特征。基于从头算分子动力学模拟及计算结果,重点阐述了咪唑型、吡啶型、碱金属离子型熔盐氯化物离子液中与过剩电子溶剂化密切相关的溶剂化能量学、结构特征、可能的存在状态以及态-态转化稳态动力学机制,分析了此类离子型介质中电子高效传导的内在本质及离子液组成离子的重要作用。阳离子的最低未占轨道组成的导带结构是离子液中过剩电子的溶剂化态及其稳定性的决定因素,任何能影响或改变其导带结构的因素均能显著影响过剩电子溶剂化。但快速的态-态转化及电子迁移并不明显取决于其组成离子扩散动力学,而是敏感地受离子液涨落所控制。这种基于溶剂化电子的迁移模式构成了此类离子型介质甚至其它液态介质中电子转移的新途径。  相似文献   

6.
In contrast to the extensive theoretical investigation of the solvation phenomena, the dissolution phenomena have hardly been investigated theoretically. Upon the excitation of hydrated halides, which are important substances in atmospheric chemistry, an excess electron transfers from the anionic precursor (halide anion) to the solvent and is stabilized by the water cluster. This results in the dissociation of hydrated halides into halide radicals and electron-water clusters. Here we demonstrate the charge-transfer-to-solvent (CTTS)-driven femtosecond-scale dissolution dynamics for I-(H2O)n=2-5 clusters using excited state (ES) ab initio molecular dynamics (AIMD) simulations employing the complete-active-space self-consistent-field (CASSCF) method. This study shows that after the iodine radical is released from I-(H2O)n=2-5, a simple population decay is observed for small clusters (2 相似文献   

7.
The mechanism and dynamics of the formation of a hydrogen molecule by incorporating two hydrogen atoms in a stepwise manner into the cavity of some POSS (polyhedral oligomeric silsesquioxanes) compounds has been investigated by ab initio molecular orbital and ab initio molecular dynamics (AIMD) methods. The host molecules in the present reactions are two types of POSS, T(8) ([HSiO(1.5)](8)) and T(12)(D(2d)) ([HSiO(1.5)](12)). AIMD simulations were performed at the CASSCF level of theory, in which two electrons and two orbitals of the colliding hydrogen atoms are included in the active space. The trajectories were started by inserting the second hydrogen atom into the hydrogen atom-encapsulated-POSS (H + H@T(n) → H(2)@T(n); n = 8 and 12). In many cases, the gradual formation of a hydrogen molecule has been observed after frequent collisions of two hydrogen atoms within the cages. The effect of the introduction of an argon atom in T(12) is discussed as well.  相似文献   

8.
The hydrated electron is a unique solvent-supported state comprised of an excess electron that is confined to a cavity by the surrounding water. Theoretical studies have suggested that two-electron solvent-supported states also can be formed; in particular, simulations indicate that two excess electrons could pair up and occupy a single cavity, forming a so-called hydrated dielectron. Although hydrated dielectrons have not been observed directly by experiment, their existence has been posited to explain the lack of an ionic strength effect in hydrated electron bimolecular annihilation [Schmidt, K. H.; Bartels, D. M. Chem. Phys. 1995, 190, 145]. To determine whether dielectrons may be created in the laboratory, we use thermodynamic integration (TI), combined with mixed quantum/classical molecular dynamics simulation, to examine the thermodynamic stability of hydrated electrons and dielectrons. For the dielectron calculations, we solve the two-electron quantum problem using full configuration interaction. Our results suggest that hydrated dielectrons are thermodynamically unstable relative to separated (single) hydrated electrons, although we also show that increasing the pressure could drive the equilibrium toward the formation of dielectrons. Because the simulations suggest that hydrated dielectrons are kinetically stable, we also examine a scenario for creating metstable, nonequilibrium populations of dielectrons, which involves the capture of a newly injected electron by a preexisting, equilibrated hydrated electron. These calculations, which allow for the full nonadiabatic relaxation of the injected electron, show that hydrated electrons may indeed act as trapping sites for unequilibrated electrons, so that capture may be a viable mechanism for creating dielectrons. We suggest possible experimental procedures to create such nonequilibrium hydrated dielectrons using either pulse radiolysis or ultrafast spectroscopic techniques.  相似文献   

9.
The hydrated dielectron is composed of two excess electrons dissolved in liquid water that occupy a single cavity; in both its singlet and triplet spin states there is a significant exchange interaction so the two electrons cannot be considered to be independent. In this paper and the following paper,we present the results of mixed quantum/classical molecular dynamics simulations of the nonadiabatic relaxation dynamics of photoexcited hydrated dielectrons, where we use full configuration interaction (CI) to solve for the two-electron wave function at every simulation time step. To the best of our knowledge, this represents the first systematic treatment of excited-state solvation dynamics where the multiple-electron problem is solved exactly. The simulations show that the effects of exchange and correlation contribute significantly to the relaxation dynamics. For example, spin-singlet dielectrons relax to the ground state on a time scale similar to that of single electrons excited at the same energy, but spin-triplet dielectrons relax much faster. The difference in relaxation dynamics is caused by exchange and correlation: The Pauli exclusion principle imposes very different electronic structure when the electrons' spins are singlet paired than when they are triplet paired, altering the available nonadiabatic relaxation pathways. In addition, we monitor how electronic correlation changes dynamically during nonadiabatic relaxation and show that solvent dynamics cause electron correlation to evolve quite differently for singlet and triplet dielectrons. Despite such differences, our calculations show that both spin states are stable to excited-state dissociation, but that the excited-state stability has different origins for the two spin states. For singlet dielectrons, the stability depends on whether the solvent structure can rearrange to create a second cavity before the ground state is reached. For triplet dielectrons, in contrast, electronic correlation ensures that the two electrons do not dissociate, even if the dielectron is artificially kept from reaching the ground state. In addition, both singlet and triplet dielectrons change shape dramatically during relaxation, so that linear response fails to describe the solvation dynamics for either spin state. In the following paper (Larsen, R. E.; Schwartz, B. J. J. Phys. Chem. B 2006, 110, 9692), we use these simulations to calculate the pump-probe spectroscopic signal expected for photoexcited hydrated dielectrons and to predict an experiment to observe hydrated dielectrons directly.  相似文献   

10.
Electrons with virtually no kinetic energy (close to 0 eV) trigger the decomposition of cytotoxic cyclobutane‐pyrimidine dimer (CPD) into a surprisingly large variety of fragment ions plus their neutral counterparts. The response of CPD to low energy electrons is thus comparable to that of explosives like trinitrotoluene (TNT). The dominant unimolecular reaction is the splitting into two thymine like units, which can be considered as the essential molecular step in the photolyase of CPD. We find that CPD is significantly more sensitive towards low energy electrons than its thymine building blocks. It is proposed that electron attachment at very low energy proceeds via dipole bound states, supported by the large dipole moment of the molecule (6.2 D). These states act as effective doorways to dissociative electron attachment (DEA).  相似文献   

11.
The structural, dynamic, and thermodynamic properties of an excess electron interacting with an alkali cation (Na+, K+, Li+) in bulk water were investigated by means of a mixed quantum-classical molecular dynamics simulation technique. This study includes a reparametrization of the electron-cation pseudopotentials. The free energy calculations for all three systems show that a contact electron-cation pair can be observed, which is either as stable as the dissociated pair (Li+) or more stable by only a few kT (Na+, K+). Given that the dissociation barrier is also quite small, we suggest that the average cation-electron distance in the experiments at room temperature will not depend on this free energy profile but rather on the minimization of the Coulombic repulsive interaction between like charges in the solvent medium. This enables us to compare the present molecular dynamics simulations with the spectroscopic data obtained for different ionic strengths. The overall trend of the UV-vis hydrated absorption spectra, namely, the shift toward shorter wavelengths at high ionic strengths, is fairly well reproduced. This confirms our hypothesis of statistical distribution of the cations and solvated electrons.  相似文献   

12.
The interaction of an excess electron with a polar molecular environment is well known as electron solvation. This process is characterized by an energetic stabilization and by changes of the electronic spatial extent due to screening of the localized charge through molecular rearrangement. At metal–ice interfaces we photo-inject delocalized electrons from the metal substrate into adsorbed ice layers and analyze the ultrafast dynamics of electron transfer, localization and solvation by femtosecond time- and angle-resolved two-photon photoemission spectroscopy. To acquire further understanding of the individual steps of the complex process we vary the interfacial structure. The substrate is changed between Cu(1 1 1) and Ru(0 0 1) and the electron dynamics in ice islands are compared to closed D2O layers. Contrasting crystalline and amorphous ice we found that electron solvation is mediated through electron localization at favorable structural sites, which occurs very efficiently in amorphous ice, but is less likely in a crystalline layer. Next, we find that in an open ice structure like ice islands the energetic stabilization due to electron solvation proceeds at a rate of 1 eV/ps which is three times faster than in a closed ice layer. We attribute this behavior to differences in the molecular coordination, which determines the molecular mobility and, thus, the transfer rate of electronic energy to solvent modes. The substrate’s electronic structure, on the other hand, is important to understand the transfer rates from electrons in ice back to the metal. First experiments on trapped electrons in crystalline ice underline the potential to study electron solvation not only during the equilibration process, but also in quasi-static conditions, where we find that the stabilization continues, although at much weaker rates.  相似文献   

13.
Kohn-Sham density functional theory and plane wave basis set based ab initio molecular dynamics (AIMD) simulation is a powerful tool for studying complex reactions in solutions, such as electron transfer (ET) reactions involving Fe2+/Fe3+ ions in water. In most cases, such simulations are performed using density functionals at the level of Generalized Gradient Approximation (GGA). The challenge in modelling ET reactions is the poor quality of GGA functionals in predicting properties of such open-shell systems due to the inevitable self-interaction error (SIE). While hybrid functionals can minimize SIE, standard plane-wave based AIMD at that level of theory is typically 150 times slower than GGA for systems containing ∼100 atoms. Among several approaches reported to speed-up AIMD simulations with hybrid functionals, the noise-stabilized MD (NSMD) procedure, together with the use of localized orbitals to compute the required exchange integrals, is an attractive option. In this work, we demonstrate the application of the NSMD approach for studying the Fe2+/Fe3+ redox reaction in water. It is shown here that long AIMD trajectories at the level of hybrid density functionals can be obtained using this approach. Redox properties of the aqueous Fe2+/Fe3+ system computed from these simulations are compared with the available experimental data for validation.  相似文献   

14.
Transition metal complexes with β-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn β-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.  相似文献   

15.
The solvation dynamics of excess electrons in glycerol have been measured by the pump-probe femtosecond laser technique at 333 K. The electrons are produced by two-photon absorption at 263 nm. The change in the induced absorbance is followed up to 450 ps in the spectral range from 440 to 720 nm. The transient signals of electron solvation have been analyzed by two kinetic models: a stepwise mechanism and a continuous relaxation model, using a Bayesian data analysis method. The results are compared with those previously published for ethylene glycol (J. Phys. Chem. A 2006, 110, 175) and for propanediols (J. Phys. Chem. A 2007, 111, 4902). From the comparison, it is pointed out that solvation dynamics in glycerol is very fast despite its high viscosity. This is interpreted as the existence of efficient traps for the electrons in glycerol with low potential energy. The small shift of the absorption band of the excess electron indicates that the potential of these traps is very close to that corresponding to the fully solvated electron.  相似文献   

16.
The dimerization of formamide (FMA) has been investigated by matrix isolation spectroscopy, static ab initio calculations, and ab initio molecular dynamics (AIMD) simulations. Comparison of the experimental matrix IR spectra with the ab initio calculations reveals that two types of dimers A and C are predominantly formed, with two and one strong NH...O hydrogen bonds, respectively. This is in accordance with previously published experiments. In addition, there is also experimental evidence for the formation of the thermally labile dimer B after deposition of high concentrations of FMA in solid xenon. The AIMD simulations of the aggregation process show that in all cases dimer C is initially formed, but rearrangement to the more stable doubly hydrogen-bonded structures A or B occurs for a fraction of collisions on the sub-picosecond time scale.  相似文献   

17.
Ab initio molecular dynamics (AIMD) simulations for the excited-state hydrogen transfer (ESHT) reaction of 7-azaindole (7AI-(H2O)n; n = 1, 2) clusters in the gas phase and in water are presented. The effective fragment potential (EFP) is employed to model the surrounding water molecules. The AIMD simulations for 7AI-H2O and 7AI-(H2O)2 clusters show an asynchronous hydrogen transfer at t approximately 50 fs after the photoexcitation. While the ESHT mechanism for 7AI-H2O in water does not change appreciably compared with that in the gas phase, the AIMD simulations on 7AI-(H2O)2 in water solution exhibit two different mechanisms. Since the tautomer form is lower in energy compared to the normal form in the S1 state, 7AI and (H2O) n fragments separate from each other after the ESHT. With the use of the results of the AIMD trajectories, the minimum energy conical intersection point in the tautomer region has also been located.  相似文献   

18.
The photodetachment dynamics of the iodide-aniline cluster, I-(C6H5NH2), were investigated using photoelectron-photofragment coincidence spectroscopy at several photon energies between 3.60 and 4.82 eV in concert with density functional theory calculations. Direct photodetachment from the solvated I- chromophore and a wavelength-independent autodetachment process were observed. Autodetachment is attributed to a charge-transfer-to-solvent reaction in which incipient continuum electrons photodetached from I- are temporarily captured by the nascent neutral iodine-aniline cluster configured in the anion geometry. Subsequent dissociation of the neutral cluster removes the stabilization, leading to autodetachment of the excess electron. The dependence of the dissociative photodetachment (DPD) and autodetachment dynamics on the final spin-orbit electronic state of the iodine fragment is characterized. The dissociation dynamics of the neutral fragments correlated with autodetached electrons were found to be identical to the DPD dynamics of the I atom product spin-orbit state closest to threshold at a given photon energy, lending support to the proposed sequential mechanism.  相似文献   

19.
We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (emet) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of emet are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups, and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (eaq). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols.

Condensed-phase first-principles molecular dynamics simulations elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号