共查询到20条相似文献,搜索用时 15 毫秒
1.
垂直结构多色量子点LED(QD-LED)最新进展 总被引:1,自引:0,他引:1
量子点LED以胶体量子点为发光层,通过调节作为发光层量子点的尺寸可以制作出覆盖可见(380-780nm)以及近红外光谱的量子点LED(QD-LED),而且量子点LED器件发出的光谱范围很窄,其光谱半高宽可达30nm。简述了当今国内外关于QD-LED器件结构的研究成果以及器件的制作工艺,介绍了目前课题组最新的一些相关成果。重点阐述了目前已经得到验证的几种量子点器件结构,分析了其存在的优缺点,这些结论对进一步改进QD-LED的结构以及使其可以更有利于商业化提供了参考。 相似文献
2.
The advantage of blue InGaN multiple quantum wells light-emitting diodes with p-AlInN electron blocking layer 下载免费PDF全文
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investigated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs). 相似文献
3.
4.
5.
Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot 下载免费PDF全文
A bright white quantum dot light-emitting device(white-QLED) with 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m~2@8 V with the Commission Internationale de l'Eclairage(CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence(EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. 相似文献
6.
Organic light emitting diodes using magnesium doped organic acceptor as electron injection layer and silver as cathode 下载免费PDF全文
Organic light emitting diodes employing magnesium doped electron
acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride
(Mg:PTCDA) as electron injection layer and silver as cathode were
demonstrated. As compared to Mg:Ag cathode, the combination of
the Mg:PTCDA layer and silver provided enhanced electron
injection into tris (8-quinolinolato) aluminium. The device with
1:2 Mg:PTCDA and Ag showed an increase of about 12% in the
maximum current efficiency, mainly due to the improved hole-electron
balance, and an increase of about 28% in the maximum power
efficiency, as compared to the control device using Mg:Ag
cathode. The properties of Mg:PTCDA composites were studied as
well. 相似文献
7.
In this work, the effect of Mg doping on the performance of PbS quantum dot (QD) solar cells (QDSCs) is investigated. To elucidate that, PbS QDSCs with pristine ZnO and Mg-doped ZnO (ZMO) as electron transporting layers (ETLs) are fabricated, respectively. The current density-voltage (J-V) measurements are performed. The results show that the cell efficiency of the device with ZMO as an ETL is 9.46%, which increases about 75% compared to that of the pristine ZnO based device (5.41%). Enhanced short current density (Jsc) and fill factor (FF) are observed. It is demonstrated that Mg doping could passivate the surface defects and suppress the carrier recombination in ZnO ETL, thus resulting in larger bandgap and higher Fermi level (EF). The strategy of Mg-doped ZnO ETL provides a promising way for pushing solar cell performance to a high level. 相似文献
8.
研究了利用摩擦空穴注入层3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)作为定向层实现聚芴(PFO)薄膜的偏振电致发光,蓝光的色坐标为(0.20,0.21).从聚合物薄膜的紫外可见吸收和光致发光偏振特性,研究了不同定向层摩擦强度、退火温度以及退火时间下PFO薄膜的二向色性,并证明退火温度是决定器件偏振性能的关键因素.当摩擦强度为25 mm退火温度和时间分别为200℃和30 min时,得到较好的偏振性能,器件的电致发光偏振率约为3.
关键词:
偏振发光
摩擦定向
聚合物电致发光
空穴注入层 相似文献
9.
Simulation study of blue InGaN multiple quantum well light-emitting diodes with different hole injection layers 下载免费PDF全文
InGaN-based light-emitting diodes with p-GaN and p-AlGaN hole injection layers are numerically studied using the APSYS simulation software.The simulation results indicate that light-emitting diodes with p-AlGaN hole injection layers show superior optical and electrical performance,such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-AlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency. 相似文献
10.
Improved performance of InGaN light-emitting diodes with a novel sawtooth-shaped electron blocking layer 下载免费PDF全文
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band. 相似文献
11.
采用新型双空穴注入层N, N, N', N'-tetrakis(4-Methoxy-phenyl)benzidine/Copper phthalocyanine(MeO-TPD/CuPc)及器件结构:ITO/MeO-TPD(15 nm)/CuPc(15 nm)/ N, N'-Bis(naphthalen-1-yl)-N, N'-bis(phenyl)benzidine (NPB, 15 nm)/8-hydroxyquinoline (Alq3, 50 nm)/LiF(1 nm)/Al(120 nm), 研制出高效有机发光二极管(器件D), 与其他器件(器件A, 没有空穴注入层的器件; 器件B, MeO-TPD单空穴注入层; 器件C, CuPc单空穴注入层)相比, 其性能得到明显改善. 器件D的起亮电压降至3.2 V, 比器件A, B, C的起亮电压分别降低了2, 0.3, 0.1 V. 器件D在10 V时, 其最大亮度为23893 cd/m2, 最大功率效率为1.91 lm/W, 与器件A, B, C的最大功率效率相比, 分别提高了43% (1.34 lm/W), 22% (1.57 lm/W), 7% (1.79 lm/W). 性能改善的主要原因是由于空穴注入和传输性能得到了改善, 通过单空穴型器件的J-V 曲线对这一现象进行了分析.
关键词:
有机发光二极管
空穴注入层
功率效率
势垒 相似文献
12.
Internal quantum efficiency drop induced by the heat generation inside of light emitting diodes (LEDs) 下载免费PDF全文
The reasons for low output power of AlGaInP Light Emitting Diodes (LEDs) have been analysed. LEDs with AlGaInP material have high internal but low external quantum efficiency and much heat generated inside especially at a large injected current which would reduce both the internal and external quantum efficiencies. Two kinds of LEDs with the same active region but different window layers have been fabricated. The new window layer composed of textured 0.5 μm GaP and thin Indium-Tin-Oxide film has shown that low external quantum efficiency (EQE) has serious impaction on the internal quantum efficiency (IQE), because the carrier distribution will change with the body temperature increasing due to the heat inside, and the test results have shown the evidence of LEDs with lower output power and bigger wavelength red shift. 相似文献
13.
Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells 下载免费PDF全文
Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1 - xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation. 相似文献
14.
Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region 下载免费PDF全文
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger. 相似文献
15.
分别在Si(110)和Si(111)衬底上制备了In Ga N/Ga N多量子阱结构蓝光发光二极管(LED)器件.利用高分辨X射线衍射、原子力显微镜、室温拉曼光谱和变温光致发光谱对生长的LED结构进行了结构表征.结果表明,相对于Si(111)上生长LED样品,Si(110)上生长的LED结构晶体质量较好,样品中存在较小的张应力,具有较高的内量子效率.对制备的LED芯片进行光电特性分析测试表明,两种衬底上制备的LED芯片等效串联电阻相差不大,在大电流注入下内量子效率下降较小;但是,相比于Si(111)上制备LED芯片,Si(110)上LED芯片具有较小的开启电压和更优异的发光特性.对LED器件电致发光(EL)发光峰随驱动电流的变化研究发现,由于Si(110)衬底上LED结构中阱层和垒层存在较小的应力/应变而在器件中产生较弱的量子限制斯塔克效应,致使Si(110)上LED芯片EL发光峰随驱动电流的蓝移量更小. 相似文献
16.
量子点材料因具有发光波长可调,色度纯,量子效率高等优异特性而受到广泛关注,在光致发光高色彩显示方面有着巨大的应用潜力。本文综述了量子点背光技术的研究进展,主要对比了QDs On-Chip、QDs On-Surface及QDs On-Edge 3种量子点背光主流技术的基本原理及结构,并分析了它们在液晶显示领域的应用,未来前景及面临的挑战;然后介绍了几种新型的量子点背光技术,并对两种量子点背光新技术进行重点说明:一种是采用低温注塑成型工艺将量子点与高分子材料均匀混合为一体,用于制备直下式背光的量子点体散射型结构扩散板;另一种新技术是采用丝网印刷或喷墨打印工艺将量子点转印至导光板表面,形成应用于侧入式背光的量子点网点微结构导光板。这两种背光都具有制备工艺简单、成本低、生产效率高等特点,对高色域液晶显示的研究及发展意义深远。 相似文献
17.
Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer 下载免费PDF全文
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used. 相似文献
18.
为了提高GaN基发光二极管(LED)的外量子效率,在蓝宝石衬底制作了二维光子晶体.衬底上的二维光子晶体结构采用激光全息技术和感应耦合等离子体(ICP)干法刻蚀技术制作,然后采用金属氧化物化学气相沉积(MOCVD)技术在图形蓝宝石衬底(PSS)上生长2μm厚的n型GaN层,4层量子阱和200nm厚的p型GaN层,形成LED结构.衬底上制作的二维光子晶体为六角晶格结构,晶格常数为3.8μm,刻蚀深度为800nm.LED器件光强输出测试结果显示,在PSS上制作的LED(PSS-LED)的发光强度普遍高于蓝宝石平
关键词:
全息
发光二极管
图形蓝宝石衬底
外量子效率 相似文献
19.
采用交流阻抗谱,电容-电压,电容-频率等实验方法,研究了共轭高分子MEH-PPV(poly[2-methoxy,5-(2-ethylhexoxy)-1,4-phenylene vinylene])发光二极管的载流子注入过程.对于结构为ITO/PEDOT/MEH-PPV/Ba/Al的发光器件,实验结果表明,电极界面是欧姆接触的,载流子的注入是非平衡的,器件薄膜中存在陷阱容易俘获注入电荷,形成空间电荷区,陷阱密度约为3.75×1016cm-3.
关键词:
高分子发光二极管
交流阻抗谱
cole-cole图
载流子注入 相似文献
20.
Efficiency droop alleviation in blue light emitting diodes using the InGaN/GaN triangular-shaped quantum well 下载免费PDF全文
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED. 相似文献