首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report on current-induced thermal power investigation of graphene nanostructure for potential local-heating applications. It is found that the efficiency of heating can be greatly improved if graphene is patterned into structures with narrow width and long channel. In a narrow graphene-ribbon, the Joule heating power exhibits an obvious dependence on the back-gate voltage. By monitoring Raman spectra, the temperature of graphene-ribbon can be determined. The temperature of graphene-ribbon is modulated by the electric field effect when the sample is sourced with a relatively high current.  相似文献   

2.
Dielectrophoresis of nanocolloids: A molecular dynamics study   总被引:1,自引:0,他引:1  
Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for a polarizable nanoparticle, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature.  相似文献   

3.
The velocity of micro-particles in a nonuniform electric field was examined as a function of electrical potential and particle size to illustrate the possible application of dielectrophoresis (DEP) as a new separation technique in viscous media. A new comprehensive model is presented that combines the effects of DEP and electrohydrodynamic forces on particle motion. The current model simulation takes into account the possible significant influence of electrohydrodynamic effects depending on the particle size, electrode distance, and voltage applied during DEP particle separation. The heat generated as a consequence of high electric field strength leads to density gradients in the liquid, thus inducing buoyancy forces that cause fluid convective motion.Experimental velocity measurements using two materials having extreme properties, i.e. polyethylene (PE) particles (diameter range 100–2000 μm) and water droplets (diameter range 25–275 μm), both suspended in a viscous medium (silicone oil), correspond with the proposed theoretical predictions. The comprehensive model presented was applied to insulator-based DEP in a direct current (dc) electric field, but it is expected to allow predictions of various similar systems.  相似文献   

4.
Abstract

The objective of this work was to develop and characterize a poly(dimethylsiloxane) device with an integrated active cooling function able to carry out capillary electrophoresis separations. Polymer-based microdevices are indispensable to recent advances in biomedical analysis. In particular, they have been applied to many microfluidic platforms owing to their low cost, ease of fabrication, and versatility in preparing complex microstructures. However, when applied to capillary electrophoresis separations, polymer microfluidic structures present an inherent disadvantage compared to glass and Si structures; they have a lower thermal conductivity than glass and Si. Although miniaturized devices allow operation at high electric fields, they face separation efficiency limitations due to Joule heating. There is, therefore, a strong need of developing capillary electrophoresis microfluidic structures with active cooling in order to operate at a higher electric field and potentially increase separation efficiency in these microdevices. A poly(dimethylsiloxane)/glass hybrid microfluidic capillary electrophoresis system is presented, where Joule heating was minimized by using an integrated active cooling function. Two poly(dimethylsiloxane) slabs with embedded microfluidic structures were irreversibly sealed on both sides of a thin glass slide. The top poly(dimethylsiloxane) slab was used to carry out capillary electrophoresis separations, whereas the bottom poly(dimethylsiloxane) slab was employed to cool down the buffer solution used during the capillary electrophoresis separation. As demonstrated on current versus voltage plots and on capillary electrophoresis electropherograms, capillary electrophoresis separation was able to be operated at a higher electric field when using the cooling function. The cooling rate was adjustable by varying the flow rate and the initial temperature of the liquid flowing in the cooling microfluidic structure.  相似文献   

5.
宋坤  柴常春  杨银堂  贾护军  陈斌  马振洋 《物理学报》2012,61(17):177201-177201
基于器件物理分析方法,结合高场迁移率、肖特基栅势垒降低、势垒隧穿等物理模型, 分析了改进型异质栅结构对深亚微米栅长碳化硅肖特基栅场效应晶体管沟道电势、 夹断电压以及栅下电场分布的影响.通过与传统栅结构器件特性的对比表明, 异质栅结构在碳化硅肖特基栅场效应晶体管的沟道电势中引入了多阶梯分布,加强了近源端电场; 另一方面,相比于双栅器件,改进型异质栅器件沟道最大电势的位置远离源端, 因此载流子在沟道中加速更快,在一定程度上屏蔽了漏压引起的电势变化,更好抑制了短沟道效应. 此外,研究了不同结构参数的异质栅对短沟道器件特性的影响,获得了优化的设计方案, 减小了器件的亚阈值倾斜因子.为发挥碳化硅器件在大功率应用中的优势,设计了非对称异质栅结构, 改善了栅电极边缘的电场分布,提高了小栅长器件的耐压.  相似文献   

6.
微流动细胞颗粒中介电泳力的分析   总被引:2,自引:1,他引:1  
介电泳分离方法的研究在微电子机械系统及生物领域具有广泛的应用前景.本文对介电泳作用下细胞颗粒在微通道电解溶液内流动进行了理论分析,对作用在分离流动方向细胞颗粒上的介电泳力和粘性力进行了分析.模拟了交流电场在频率1000 kHz微通道内三维电势分布和不同时间的介电泳力分布变化.  相似文献   

7.
8.
When an increasing diode voltage is applied, enhanced field emission of electrons begins from a growing number of small spots or whiskers on the cathode surface. This stimulates desorption of weakly bound adsorbates from the surface of a whisker. As the diode voltage increases, the 100-V equipotential surface moving toward the cathode is met by the desorbed neutrals moving away from the cathode, resulting in sharp risetime for the onset of ionization of desorbed neutrals by field-emitted electrons. Positive ions produced in the ionization region a few microns from the electron emitting spot are accelerated back to it. This bombardment leads to surface heating of the spot. The onset of breakdown by this mechanism requires much less current than the Joule heating mechanism. The localized buildup of plasma above the electron emitting spot leads to pressure and electric field distributions that ignite unipolar arcs. The high current density of the unipolar arc and the associated surface heating by ions result in the explosive formation of cathode spot plasma  相似文献   

9.
Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.  相似文献   

10.
Among all particle separation approaches, dielectrophoresis actuators which use electric properties difference between particles, have turned into strong separating tools. This way, the particles in the fluid within non-uniform electric field experience the dielectrophoresis force. The amount and direction of this force depend on the fluid and particle polarization, particle size and electric field gradient. In this paper after presenting governing equations concerning the dielectrophoresis phenomenon, a microfluidic actuator introduced in which an interdigitated electrode pattern is applied in. Voltage, pitch, and width to pitch ratio of electrode as well as channel height are of the most important geometrical parameters of this actuator whose individual effect on particles separation was investigated using finite element analysis (FEM). The simulation results showed that if the actuator is intended to work in the efficient conditions, channel height and electrodes pitch should be near to each other, height needs to be as minimum as possible while voltage as maximum as possible in order to reach to the least time duration and the highest quantity for particles separation. Then, using theoretical equations and simulation results, a flowchart is introduced to design and optimize dielectrophoresis separation actuators. Finally, experimental results for k562 cell separation, as a biological particle, from Polystyrene, as a standard particle, is presented. In the fabricated actuator recovery and purity efficiency are 93% and about 100% respectively.  相似文献   

11.
We examined the electrical and local structural properties of a VO2 film at different electric fields using electrical resistance and x-ray absorption fine structure (XAFS) measurements at the V K edge in the temperature range of 30–100 °C. The Tc value of the metal-to-insulator transition (MIT) during both heating and cooling decreases with electric field. When the electric field exceeds a certain value, the MIT becomes sharper due to Joule heating. The MIT, the structural phase transition (SPT), and the pre-edge peak transition of the VO2 do not congruently occur at a uniform temperature. A metallic VO2 is observed in only the rutile (or M2) symmetry. An electric field induces a substantial amount of conduction electrons in insulating VO2. Simultaneously measured resistance and XAFS reveal that Joule heating caused by an external electric field significantly affects the MIT and SPT of VO2.  相似文献   

12.
AlGaN/GaN HEMT外部边缘电容Cofd是由栅极垂直侧壁与二维电子气水平壁之间的电场构成的等效电容.本文基于保角映射法对Cofd进行物理建模,考虑沟道长度调制效应,研究外部偏置、阈值电压漂移和温度变化对Cofd的影响:随着漏源偏压从零开始增加,Cofd先保持不变再开始衰减,其衰减速率随栅源偏压的增加而减缓;AlGaN势垒层中施主杂质浓度的减小和Al组分的减小都可引起阈值电压的正向漂移,正向阈值漂移会加强沟道长度调制效应对Cofd的影响,导致Cofd呈线性衰减.在大漏极偏压工作情况下,Cofd对器件工作温度的变化更加敏感.  相似文献   

13.
Abstract

The aim of this work is to present new devices for the measurement of velocity, kinetics, and enthalpy of chemical reactions occurring in a microfluidic chip, co-flow, or droplets flow. The thermal analysis goes from the macroscopic approach by microcalorimetry to microscopic analysis inside the microchannel by IR thermography. Concerning microcalorimetry, the enthalpy is deduced from the measurement of the global heat flux dissipated by the chemical reaction as a function of the molar flow rate. A validation is presented on a well-known acid-base reaction. This device can be combined with an IR camera for local characterization. The processing of the measured temperature fields allows the estimation of properties of great importance for chemical engineers, such as heating source distribution (i.e., the kinetics) of the chemical reaction along the channel. A validation experiment of a temperature field processing method is proposed with the Joule effect. From such a previous experiment, a Peclet field is estimated and used in a further step in order to study an acid-base co-flow configuration. Finally, a first tentative of thermal characterization inside droplets flow during an acid-base chemical reaction is also presented.  相似文献   

14.
We show that the SET operation of a unipolar memristor could be explained by thermophoresis, or the Soret effect, which is the diffusion of atoms, ions or vacancies in a steep temperature gradient. This mechanism explains the observed resistance switching via conducting channel formation and dissolution reported for TiO2 and other metal-oxide-based unipolar resistance switches. Depending on the temperature profile in a device, dilute vacancies can preferentially diffuse radially inward toward higher temperatures caused by the Joule heating of an electronic current to essentially condense and form a conducting channel. The RESET operation occurs via radial diffusion of vacancies away from the channel when the temperature is elevated but the gradient is small.  相似文献   

15.
外加高压电场下空气中激光等离子体通道寿命研究   总被引:1,自引:0,他引:1  
通过对飞秒激光在空气中产生的等离子体通道两端外加高压,来研究通道的寿命变化情况。实验得到,当在等离子体通道两端外加高压时(350 kV/m),等离子体通道寿命延长了近3倍。理论模拟和分析结果表明在外加电场条件下,碰撞电离得到增强,吸附作用相对减弱,解离复合系数随着电子平均能量的增加而下降的趋势更为剧烈,这进一步引起了等离子体通道寿命的延长。实验结果与理论分析共同表明了利用外加电场对空气中激光等离子体通道寿命进行延长的可行性。  相似文献   

16.
李超  姚湲  杨阳  沈希  高滨  霍宗亮  康晋锋  刘明  禹日成 《物理学报》2018,67(12):126802-126802
总结了我们将原位技术和透射电子显微学分析方法相结合,针对纳米材料和器件的结构、形貌、成分以及电势分布等物理性质的动态行为所开展的综合物性表征和分析工作.主要成果有:揭示了C_(60)纳米晶须在焦耳热作用下的结构相变路径;观察到了电荷俘获存储器中的电荷存储位置以及栅极电压诱导的氧空位缺陷;研究了阻变存储器中氧空位通道的形成过程以及导电通道的开关机理.这些成果不但有助于深入理解纳米材料和器件相关功能的物理机理,改善其工作性能,更展示了透射电子显微学在微电子领域强大的研究能力.  相似文献   

17.
《中国物理 B》2021,30(6):65201-065201
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.  相似文献   

18.
李志鹏  李晶  孙静  刘阳  方进勇 《物理学报》2016,65(16):168501-168501
本文针对高电子迁移率晶体管在高功率微波注入条件下的损伤过程和机理进行了研究,借助SentaurusTCAD仿真软件建立了晶体管的二维电热模型,并仿真了高功率微波注入下的器件响应.探索了器件内部电流密度、电场强度、温度分布以及端电流随微波作用时间的变化规律.研究结果表明,当幅值为20 V,频率为14.9 GHz的微波信号由栅极注入后,器件正半周电流密度远大于负半周电流密度,而负半周电场强度高于正半周电场.在强电场和大电流的共同作用下,器件内部的升温过程同时发生在信号的正、负半周内.又因栅极下靠近源极侧既是电场最强处,也是电流最密集之处,使得温度峰值出现在该处.最后,对微波信号损伤的高电子迁移率晶体管进行表面形貌失效分析,表明仿真与实验结果符合良好.  相似文献   

19.
In this work the effect of the dielectrophoretic force (DEP) in the self-assembly process of nanoparticles electrosprayed onto a substrate, is examined. DEP force is originated by the electric field created by the electrospray gun and by the distortion of the field created by the effective dipole of each nanoparticle. It is also shown that the modulus of this force is large when the distance between particles is few times its diameter, provided the medium is wet and the electric field is not switched off.The directional nature of DEP In this wet phase, is shown to chain nanoparticles aligned with the main electric field direction. Although there is a repulsive force between chains in the orthogonal direction to the field, it is minimum when the beads align with the voids in the nearby chains.DEP is a dominant force in the close distances of nanoparticles compared to double layer, van der Waals, electrophoretic retardation, weight and buoyancy.  相似文献   

20.
Nonlinear real-time response of interacting particles is studied on the example of a one-dimensional tight-binding model of spinless fermions driven by electric field. Using equations of motion and numerical methods we show that for a nonintegrable case at finite temperatures the major effect of nonlinearity can be taken into account within the linear response formalism extended by a renormalization of the kinetic energy due to the Joule heating. On the other hand, integrable systems show on constant driving a different universality with a damped oscillating current whereby the frequency is related but not equal to the Bloch oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号