首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we investigate the controlled dense coding with the maximal slice states. Three schemes are presented. Our schemes employ the maximal slice states as quantum channel, which consists of the tripartite entangled state from the first party(Alice), the second party(Bob), the third party(Cliff). The supervisor(Cliff) can supervises and controls the channel between Alice and Bob via measurement. Through carrying out local von Neumann measurement, controlled-NOT operation and positive operator-valued measure(POVM), and introducing an auxiliary particle, we can obtain the success probability of dense coding. It is shown that the success probability of information transmitted from Alice to Bob is usually less than one. The average amount of information for each scheme is calculated in detail. These results offer deeper insight into quantum dense coding via quantum channels of partially entangled states.  相似文献   

2.
王琼  李际新  曾浩生 《中国物理 B》2009,18(4):1357-1361
This paper investigates the change of entanglement for transmitting an arbitrarily entangled two-qubit pure state via one of three typical kinds of noisy quantum channels: amplitude damping quantum channel, phase damping quantum channel and depolarizing quantum channel. It finds, in all these three cases, that the output distant entanglement (measured by concurrence) reduces proportionately with respect to its initial amount, and the decaying ratio is determined only by the noisy characteristics of quantum channels and independent of the form of initial input state.  相似文献   

3.
李艳玲  方卯发  肖兴  吴超  侯丽珍 《中国物理 B》2010,19(6):60306-060306
The effects of distributing entanglement through the amplitude damping channel or the phase damping channel on the teleportation of a single-qubit state via the Greenberger--Horne--Zeilinger state and the W state are discussed. It is found that the average fidelity of teleportation depends on the type and rate of the damping in the channel. For the one-qubit affected case, the Greenberger--Horne--Zeilinger state is as robust as the W state, i.e., the same quantum information is preserved through teleportation. For the two-qubit affected case, the W state is more robust when the entanglement is distributed via the amplitude damping channel; if the entanglement is distributed via the phase damping channel, the W state is more robust when the noisy parameter is small while the Greenberger--Horne--Zeilinger state becomes more robust when it is large. For the three-qubit affected case, the Greenberger--Horne--Zeilinger state is more robust than the W state.  相似文献   

4.
石甲栋  吴韬  宋学科  叶柳 《中国物理 B》2014,23(2):20310-020310
In this paper,we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment,and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames.Through the calculations and analyses,it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel,while the system is under the phase damping and flip channels.This protection protocol cannot prevent entanglement but will accelerate the death of entanglement.In addition,if the system is in the noninertial reference frame,then the effect of weak measurement will be weakened for the amplitude damping channel.Nevertheless,for other decoherence channels,the Unruh effect does not affect the quantum weak measurement,the only exception is that the maximum value of entanglement is reduced to√2/2of the original value in the inertial frames.  相似文献   

5.
Controlled Dense Coding between Multi-Parties   总被引:1,自引:0,他引:1  
Controlled dense coding via multi-particles GHZ state and multi-particles GHZ-class state are exploited in this letter. The quantum channel and the amount of information between the senders and the receivers are controlled by the supervisor via his local measurement. The amount of information is determined by Charlie’s measurement in the former case of GHZ state, and also by the coefficients of the original GHZ-class state in the latter case.  相似文献   

6.
Entanglement swapping combined with environment measurement is proposed to purify entanglement of two-qutrit entangled states subjected to the local individual amplitude damping channels. The resultant states of our scheme have much more entanglement even though entanglement swapping itself cannot purify entanglement. When the scheme is applied to dense coding, the dense coding capacity can be significantly improved.  相似文献   

7.
Protection of entanglement from disturbance of the environment is an essential task in quantum information processing. We investigate the effect of the weak measurement and reversal (WMR) on the protection of the entanglement for an arbitrarily entangled two-qubit pure state from these three typical quantum noisy channels, i.e., amplitude damping channel, phase damping channel and depolarizing quantum channel. Given the parameters of the Bell-like initial qubits’ state |ψ〉 = a|00〉 + d|11〉, it is found that the WMR operation indeed helps for protecting distributed entanglement from the above three noisy quantum channels. But for the Bell-like initial qubits’ state |?〉 = b|01〉 + c|10〉, the WMR operation only protects entanglement in the amplitude damping channel, not for the phase damping and depolarizing quantum channels. In addition, we discuss how the concurrence and the success probability behave with adjusting the weak or the reversal weak measurement strength.  相似文献   

8.
《Physics letters. A》2004,321(1):1-5
We present a simple model of quantum communication where a noisy quantum channel may benefit from the addition of further noise at the decoding stage. We demonstrate enhancement of the classical information capacity of an amplitude damping channel, with a predetermined detection threshold, by the addition of noise in the decoding measurement.  相似文献   

9.
Two schemes for dense coding via local measurement with an extended GHZ-type state are investigated. In this protocol, the supervisor (Cliff) can control the channel and the average amount of information transmitted from the sender (Alice) to the receiver (Bob) by adjusting the local measurement angle θ. It is shown that the results for the average amounts of information are unique from the different two schemes.  相似文献   

10.
绝对编码光栅的相位细分及其在位移测量中的应用   总被引:2,自引:1,他引:1  
提出通过光栅条纹相位的精密测量,获取光栅高精度位移信息的方法。具体方法是对光栅图像采用多码道设计,用CCD二维图像传感器获取测量段光栅图像多码道信息。对最低码道图形的周期函数序列进行傅里叶变换、基频滤波和逆傅里叶变换获得光栅截断相位分布,其余码道信息提供相位展开的级次,以此获得测量段光栅的绝对相位分布。用光刻的手段制作了实用的绝对编码光栅,基元码道的尺寸是:27.36μm用于明条纹,27.36μm用于暗条纹,最小基元码道空间周期为54.72μm,光栅长度为14008.32μm。在步长近似3μm的位移测试中,与比对的标准仪器记录值比较,标准偏差为0.2057μm,精度在亚微米量级。重复性实验表明,位置测试的稳定性为0.09μm(标准差),得到600倍以上细分的分辨力。  相似文献   

11.
Protection of entanglement from disturbance of the environment is an essential task marion processing. We examine the validity and limitation of the weak measurement and reversal in quantum infor- (WMR) operation in the protection of distributed entanglement from various decoherence sources. Since the entanglement variation can be investigated analytically for an arbitrarily entangled bipartite pure state under three kinds of typical noisy quantum channels, we show explicitly that the WMR operation indeed helps for protecting distributed entanglement from ampli- tude damping and phase damping, but not for depolarizing. Bxperimental feasibility for testing our results is discussed using current laboratory techniques.  相似文献   

12.
In this paper, an efficient scheme for controlled dense coding is presented via partially entangled states with the aid of auxiliary particles and appropriate local unitary operations. The detail implementation producers for our proposal are given, and the total average amount of classical information, which is depending on the superposition factors of quantum channel and measurement basis of the controller, is calculated. Moreover, it is demonstrated that this proposal can be realizable based on quantum circuits.  相似文献   

13.
Two schemes, via entanglement concentration and with generalized measurement respectively, for controlled dense coding with a one-dimensional five-qubit cluster state are investigated. In this protocol, the supervisor (Cliff) can control the entanglement of the channel and the average amount of information transmitted from the sender (Alice) to the receiver (Bob) by adjusting the local measurement angle θ. It is shown that the results for the average amounts of information are unique from the different two schemes.  相似文献   

14.
We employ the technique of weak measurement in order to enable preservation of teleportation fidelity for two-qubit noisy channels. We consider one or both qubits of a maximally entangled state to undergo amplitude damping, and show that the application of weak measurement and a subsequent reverse operation could lead to a fidelity greater than 2/3 for any value of the decoherence parameter. The success probability of the protocol decreases with the strength of weak measurement, and is lower when both the qubits are affected by decoherence. Finally, our protocol is shown to work for the Werner state too.  相似文献   

15.
We propose an efficient scheme for realizing quantum dense coding with three-particle GHZ state in separated low-Q cavities. In this paper, the GHZ state is first prepared with three atoms trapped, respectively, in three spatial separated cavities. Meanwhile, with the assistance of a coherent optical pulse and X-quadrature homodyne measurement, we can implement quantum dense coding with three-particle GHZ state with a higher probability. Our scheme can also be generalized to realize N-particle quantum dense coding.  相似文献   

16.
杨光  廉保旺  聂敏 《物理学报》2015,64(24):240304-240304
在量子通信网络中, 最佳中继路径的计算与选择策略是影响网络性能的关键因素. 针对噪声背景下量子隐形传态网络中的中继路径选择问题, 本文首先研究了相位阻尼信道及振幅阻尼信道上的纠缠交换过程, 通过理论推导给出了两种多跳纠缠交换信道上的纠缠保真度与路径等效阻尼系数. 在此基础上提出以路径等效阻尼系数为准则的隐形传态网络最佳中继协议, 并给出了邻居发现、量子链路噪声参数测量、量子链路状态信息传递、中继路径计算与纠缠资源预留等工作的具体过程. 理论分析与性能仿真结果表明, 相比于现有的量子网络路径选择策略, 本文方法能获得更小的路径平均等效阻尼系数及更高的隐形传态保真度. 此外, 通过分析链路纠缠资源数量对协议性能的影响, 说明在进行量子通信网设计时, 可以根据网络的规模及用户的需求合理配置链路纠缠资源.  相似文献   

17.
The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show that, despite the intrinsic decoherence, the correlations as well as the dense coding channel capacity can be effectively increased via the combination of system parameters, i.e., the mutual coupling energy between the two charge qubits is larger than the Josephson energy of the qubit. The bigger the difference between them is, the better the effect is.  相似文献   

18.

We investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under two typical categories of noise: phase damping channel and depolarizing channel in detail. It shows that, owing to the dissipation, the entropic uncertainty monotonically increases and tends to a steady-state value with the increase of the decoherence in phase damping channel, and can always keep its lower bound during the evolution when the initial state is the maximum entangled state. The larger correlated dephasing rate is favorable for suppressing the amount of entropic uncertainty. In contrast, under the depolarizing channel with memory, the entropic uncertainty always fails to reach its lower bound. Besides, the entropic uncertainty and its lower bound firstly increase with time, then turn down and tend to a steady-state value. The larger correlated decay rate has no benefit to improve the accuracy of quantum measurement. Our investigations might offer an insight into the dynamics of the measurement uncertainty under decoherence, and be important to quantum precision measurement in open systems.

  相似文献   

19.
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号