首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy was performed on various mixtures of the ionic liquid salt, 1‐ethyl‐3‐methylimidazolium‐bis(trifluoromethylsulfonyl)imide (EMI‐TFSI). When EMI‐TFSI is used in combination with a lithium salt, it could be a potential electrolyte for lithium‐ion or lithium metal batteries. The Raman spectra of EMI‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI, EMI‐TFSI 0.5 M Li‐TFSI 2 M vinylene carbonate (VC) and EMI‐TFSI 0.5 Li‐TFSI 2 M ethylene carbonate (EC) were collected and compared. A comparison of the peak positions of the δs CF3 mode at 742 cm−1 demonstrates that when carbonate additives are present, the lithium ion is no longer interacting with the TFSI anion. Instead, it is coordinated with the carbon–oxygen double bond of the carbonates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A new series of blended polymer electrolytes based on a boroxine polymer (BP) with poly(ethylene oxide) (PEO), an ethylene oxide–propylene oxide copolymer or poly(methyl methacrylate) were prepared. Good room temperature mechanical properties were exhibited by electrolytes containing in excess of 30% PEO. Cationic transference number measurements indicated that a slight improvement in lithium ion conductivity could be achieved by using a mixture of LiCF3SO3 and LiN(CF3SO2)2 as the electrolyte salt. Electrolytes incorporating significant proportions of BP exhibited reduced lithium–polymer electrolyte interfacial resistance.  相似文献   

3.
The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium‐ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X‐ray Raman scattering spectroscopy (a non‐resonant inelastic X‐ray scattering method) was utilized together with a closed‐circle flow cell. Carbon and oxygen K‐edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue‐shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K‐edge results agree with previous soft X‐ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K‐edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.  相似文献   

4.
The cycling performance of silicon-carbon anodes in the electrolyte with different content (0, 2, 5, 10 wt%) fluorinated ethylene carbonate (FEC) was studied. Among all the electrolytes the injection of 2 wt% FEC into carbonate electrolyte, the retention capacity of silicon carbon anode enhanced from 54.81 to 83.82% after 50 cycles. The performance of SEI layer on the anode was characterized by SEM, EIS, FTIR, and XPS analysis. These studies reveal that the SEI layer formed in the FEC-containing electrolyte effectively reduced the capacity loss of the material and reduced the interfacial impedance.  相似文献   

5.
Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device.Among them,vinylene carbonate(VC),fluoroethylene carbonate(FEC),and ethylene sulfite(ES)are the potential organic electrolyte solvents for lithium/sodium battery.However,the quantitative relation and the specific mechanism of these solvents are currently unclear.In this work,density functional theory(DFT)method is employed to study the lithium/sodium ion solvation in solvents of VC,ES,and FEC.We first find that 4VC-Li+,4VC-Na+,4ES-Li+,4ES-Na+,4FEC-Li+,and 4FEC-Na+are the maximum thermodynamic stable solvation complexes.Besides,it is indicated that the innermost solvation shells are consisted of 5VC-Li+/Na+,5ES-Li+/Na+,and 5FEC-Li+/Na+.It is also indicated that the Li+solvation complexes are more stable than Na+complexes.Moreover,infrared and Raman spectrum analysis indicates that the stretching vibration of O=C peak evidently shifts to high frequency with the Li+/Na+concentration reducing in nVC-Li+/Na+and nFEC-Li+/Na+solvation complexes,and the O=C vibration peak frequency in Na+solvation complexes is higher than that of Li+complexes.The S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of the Li+/Na+concentration,the S=O vibration in nES-Na+is higher than that in nES-Li+.The study is meaningful for the design of new-type Li/Na battery electrolytes.  相似文献   

6.
索鎏敏  方铮  胡勇胜  陈立泉 《中国物理 B》2016,25(1):16101-016101
Cation–anion interaction with different ratios of salt to solvent is investigated by FT-Raman spectroscopy. The fitting result of the C–N–C bending vibration manifests that the cation–anion coordination structure changes tremendously with the variation of salt concentration. It is well known that lithium-ion transport in ultrahigh salt concentration electrolyte is dramatically different from that in dilute electrolyte, due to high viscosity and strong cation–anion interaction. In ultrahigh salt concentrated "solvent-in-salt" electrolyte(SIS-7#), we found, on one hand, that the cation and anion in the solution mainly formed cation–anion pairs with a high Li~+coordination number(≥ 1), including intimate ion pairs(20.1%) and aggregated ion pairs(79.9%), which not only cause low total ionic conductivity but also cause a high lithium transference number(0.73). A possible lithium transport mechanism is proposed: in solvent-in-salt electrolytes, lithium ions' direct movement presumably depends on Li-ion exchange between aggregated ion pairs and solvent molecules, which repeats a dissolving and re-complexing process between different oxygen groups of solvent molecules.  相似文献   

7.
Polymer electrolytes containing epoxidised natural rubber (ENR50)/poly(vinyl chloride) (PVC) blend as a polymer host, a solvent mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizer, and lithium imide, LiN (CF3SO2)2, as a salt were studied. Polymer electrolytes that were obtained by solvent cast yielded solid dry rubbery films with a thickness range of 110–125 μm. Impedance spectroscopy, Fourier transform infra red (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed on these samples. The prepared solid polymer electrolytes exhibit ionic conductivities in the order 10−4 S cm−1 at room temperature as expected. However, the physical properties of the electrolytes have improved significantly when optimal composition has been selected. Paper presented at the International Conference on Solid State Science and Technology 2006, Kuala Terengganu, Malaysia, Sept. 4–6, 2006.  相似文献   

8.
In this paper, the results of preliminary studies of two new solvent-free polymer electrolytes based on poly(trimethylene carbonate), p(TMC), with lithium trifluoromethanesulphonate, (triflate), and lithium perchlorate are described. Thin films of these electrolytes were obtained by evaporation of solvent from homogeneous mixtures of known masses of host polymer and salt. Electrolytes with compositions of n between 1.5 and 85, where n represents the molar ratio of (O=COCH2CH2CH2O) units per lithium ion, have been prepared. These solvent-free electrolytes were characterized by measurements of total ionic conductivity, differential scanning calorimetry (DSC) and thermogravimetry (TGA). As expected from previous studies with these salts in poly(ethylene oxide), PEO, the triflate-based system showed superior thermal stability but with a lower total ionic conductivity than that of the perchlorate-containing electrolyte. The highest conductivity (approximately 3×10−4 Ω−1 cm−1) was found at 95°C with the electrolyte composition of (TMC)2LiClO4.  相似文献   

9.
The lithium salt (x) (x=LiAsF6, LiPF6) was complexed with a blend of poly(vinyl chloride) (PVC) / poly(methyl methacrylate)(PMMA) and plasticized with a combination of ethylene carbonate(EC) and propylene carbonate(PC). The electrolyte films were prepared using doctor blade method and subjected to ionic conductivity measurements at nine different temperatures viz.,-30, -15, 0, 15, 30, 40, 50, 60 and 70 °C. The films were also subjected to TG - DTA and FT-IR analysis. The effect of salt on ionic conductivity is discussed. A 75:25 PMMA/PVC blend at 60 % plasticizer content has been found to possess optimal properties in terms of ionic conductivity, thermal and electrochemical stability.  相似文献   

10.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

11.
Herein, we present the use of lithium tetrafluoroborate (LiBF4) as an electrolyte salt for wide-temperature electrolytes in lithium-ion batteries. The research focused on the application of blend salts to exhibit their synergistic effect especially in a wide temperature range. In the study, LiCoO2 was employed as the cathode material; LiBF4 and lithium difluoro(oxalate)borate (LiODFB) were added to an electrolyte consisting of ethylene carbonate (EC), propylene carbonate (PC), and ethyl methyl carbonate (EMC). The electrochemical performance of the resulting electrolyte was evaluated through various analytical techniques. Analysis of the electrical conductivity showed the relationship among solution conductivity, the electrolyte composition, and temperature. Cyclic voltammetry (CV), charge-discharge cycling, and AC impedance measurements were used to investigate the capacity and cycling stability of the LiCoO2 cathode in different electrolyte systems and at different temperatures. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the surface properties of the LiCoO2 cathode after cycling. The results indicated that the addition of a small amount of LiODFB into the LiBF4-based electrolyte system (LiBF4/LiODFB of 8:2) may enhance the electrochemical performance of the LiCoO2 cell over a relatively wide temperature range and improve the cyclability of the LiCoO2 cell at 60 °C.  相似文献   

12.
To address the challenge of the IL-based electrolyte cannot be effectively intercalated in graphite anode, and especially the urgent needs for the compatibility between high performance and high security, the IL-based hybrid electrolyte systems with ethylene carbonate/propylene carbonate (EC/PC) as a co-solvent and vinylene carbonate (VC) as an additive were designed. The high dielectric constant of EC/PC significantly increased the ionic conductivity and lithium ion migration of the electrolyte system. Meanwhile, the presence of VC can form SEI preventing EC and PYR14+ reductive decomposition on the electrode interface, and at the same moment, the SEI promotes effective Li cation insertion into the graphene interlayer. The Li/C half-cells showed high reversible capacity, cycling efficiency, and good cycle stability with the IL-based hybrid electrolyte. It is worth to highlight the better performance, in terms of the excellent thermal stability and high safety. Thus, the IL-based hybrid electrolyte combined with good electrochemical performance holds substantial promise for lithium-ion battery, and should have broad application prospects in the high energy density, especially high-security requirements, of the new lithium-ion battery.  相似文献   

13.
The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.  相似文献   

14.
Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.  相似文献   

15.
A four-probe pouch-type cell was used to study the influence of carbonate-based electrolyte composition on the total conductivity of polyolefin separator impregnated with electrolyte through the electrochemical impedance spectroscopy. A frequency dispersion of separator with electrolyte is found to be dependent on the volume ratio of ethylene carbonate and ethyl methyl carbonate in an electrolyte solution. The origin of high- and low-frequency relaxation processes obtained from the impedance spectra is discussed. A correlation between the direct current resistance of separator with electrolyte and dissociation degree of electrolyte salt is found.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2683-2686
New type polymer electrolyte films based on poly(acrylonitrile), (PAN), and cyanoethylated poly(vinyl alcohol), (CN-PVA), were prepared and their conducting behaviors were investigated. CN-PVA was prepared from poly(vinyl alcohol), (PVA) and acrylonitrile in the presence of sodium hydroxide and quaternary ammonium halide as a phase transfer catalyst. Free standing PAN- and CN-PVA-based electrolyte films were prepared by casting the propylene carbonate (PC) solution containing PAN, CN-PVA and LiClO4 and removing some amount of PC. Ionic conductivity of the electrolyte film, (PAN)10(CN-PVA) 10(LiClO4)8(PC)4 composite film was 14.6 mS cm 1 at 30 °C and 22.4 mS cm 1 at 60 °C. FTIR results for the electrolyte films suggest that the nitrile groups in the CN-PVA matrix mainly interact with the lithium ions in the films and enhance dissolution of the lithium salt in the electrolyte films.  相似文献   

17.
Lithium ion-conducting membranes with poly(ethylene oxide) (PEO)/poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN)/lithium perchlorate (LiClO4) were prepared by solution casting method. Different plasticizers ethylene carbonate (EC), propylene carbonate (PC), gamma butyrolactone (gBL), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dibutyl phthalate (DBP) were complexed with the fixed ratio of PEO/PVdC-co-AN/LiClO4. The preparation and physical and electrochemical properties of the gel polymer electrolytes have been briefly elucidated in this paper. The maximum ionic conductivity value computed from the ac impedance spectroscopy is found to be 3?×?10?4 S cm?1 for the EC-based system. From DBP-based system down to EC-based system, a decrease of crystallinity and an increase of amorphousity are depicted by X-ray diffraction technique, the decrease of band gap energy is picturized through UV–visible analysis, the decrease of glass transition temperature is perceived from differential scanning calorimetry plots, and the reduction of photoluminescence intensity is described through photoluminescence spectroscopy study at an excitation wavelength of 280 nm. Atomic force microscopic images of EC-based polymer electrolyte film show the escalation of micropores. Fourier transform infrared spectroscopy study supports the complex formation and the interaction between the polymers, salt, and plasticizer. The maximum thermal stability is obtained from thermogravimetry/differential thermal analysis, which is found to be 222 °C for the sample complexed with EC. The cyclic voltagram of the sample having a maximum ionic conductivity shows a small redox current at the anode, and cathode and the chemical stability is confirmed by linear sweep voltammetry.  相似文献   

18.
《Current Applied Physics》2020,20(1):122-131
A novel zwitterionic lithium-benzotriazole sulfobetaine is fabricated by grafting 1,3– propanesultone onto benzotriazole and then lithiating it. The resultant lithium-benzotriazole-sulfobetaine additive is used as an electrolyte additive in lithium ion batteries in 1 M LiPF6 (ethylene carbonate/dimethyl carbonate = 1:1). The electrolytes with the lithium-benzotriazole sulfobetaine shows higher ionic conductivities (2.18 × 10−2 S cm−1) compared to the bare electrolyte (1.07 × 10−2 S cm−1) and greater electrochemical stability (anodic limit at ~5.5 V vs. Li/Li+) than the pure electrolyte (anodic limit at ~4.6 V vs. Li/Li+). The discharge capacity of the lithium cobalt oxide/graphite cells is improved at higher C-rates with the addition of lithium-benzotriazole sulfobetaine due to increased ionic conductivity. The lithium cobalt oxide/graphite cells with the lithium-benzotriazole sulfobetaine additive also show stable cycling performance. These findings warrant the use of lithium-benzotriazole sulfobetaine as an electrolyte additive in lithium ion batteries.  相似文献   

19.
Poly(vinyl acetate), poly(vinylidene fluoride–hexafluoropropylene), lithium perchlorate salt, and the different plasticizer-based gel polymer electrolytes were prepared by solvent-casting technique. The structural and the complex formation have been confirmed by X-ray diffraction spectroscopic analysis. Thermal stability of the different plasticizer-added electrolyte films has been analyzed by means of thermogravimetric analysis. Ionic conductivity of the electrolyte samples has been found as a function of temperature and the plasticizers. Among the various plasticizers, ethylene carbonate-based complexes exhibit maximum ionic conductivity value of the order of 10−4 Scm−1. Finally, the microstructure of the maximum ionic conductivity sample has been depicted with the help of scanning electron microscope analysis.  相似文献   

20.
The blend-based polymer electrolyte comprising poly(vinyl chloride) (PVC) and poly(ethylene glycol) (PEG) as host polymer and lithium bis(perfluoroethanesulfonyl)imide as complexing salt have been prepared. Ethylene carbonate and dimethyl carbonate (50:50 v/v) are used as plasticizer for the system. The barium titanate is used as a filler, and the ratio of (PEG:BaTiO3) is varied to study its effect on the conductivity behavior of the electrolyte. XRD and ac impedance studies are carried out on the prepared samples. The ac impedance measurements show that the conductivity of the prepared samples depends on the (PEG:BaTiO3) ratio, and its value is higher for (15:5) wt.% of (PEG:BaTiO3)-incorporated film. The temperature dependence of the conductivity of the polymer films obeys VTF relation. The role of ferroelectric filler in enhancing the conductivity is studied. The thermal stability of the film is ascertained from TG/DTA studies. The phase morphological study reveals that the porous nature of the polymer electrolyte membranes depends on the (PEG:BaTiO3) ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号