首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国物理 B》2021,30(5):55204-055204
The nonlinear propagation of an intense Laguerre–Gaussian(LG) laser pulse in a parabolic preformed plasma channel is analyzed by means of the variational method. The evolution equation of the spot size is derived including the effects of relativistic self-focusing, preformed channel focusing, and ponderomotive self-channeling. The parametric conditions of the LG laser pulse and plasma channel for propagating with constant spot size, periodically focusing and defocusing oscillation,catastrophic focusing, and solitary waves are obtained. Compared with the laser pulse with fundamental Gaussian(FG)mode, it is found that the effect of vacuum diffraction is reduced by half and the effects of relativistic and wakefield focusing are decreased by a quarter due to the hollow transverse intensity profile of the LG laser pulse, while the effect of channel focusing is the same order of magnitude with that of the FG laser pulse. Thus, the matched condition for the intense LG laser pulse with constant spot size is released obviously, while the parameters of the laser and plasma for the existence of solitary waves nearly coincide with those of the FG laser pulse.  相似文献   

2.
Fundamental investigations of plasma diagnostics of a forward laser plasma acceleration employing laser–foil interactions were conducted for an Al-foil target irradiated with an Nd:YAG laser of 1 J/pulse with pulse width of 10 ns. Temporal evolutions of electron temperatures and densities were evaluated with electrostatic probes and spectroscopic diagnostics. From the results, it was shown that an average speed of ions in a forward direction was about 40 km/s. Also, it was shown that the plasma temperature and density were about 2.5–8 eV and 1010 cm−3, respectively.  相似文献   

3.
6SGa decays to the excited states of aSzn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 6SGa reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72±0.16)%.  相似文献   

4.
Recent results from the PAMELA, ATIC, FERMI and HESS experiments have focused attention on the possible existence of high energy cosmic rays e+ e- that may originate from dark matter annihilations or decays in the Milky Way. Here we examine the morphology of the associated γ-ray emission after propagation of the electrons generated by both annihilating and decaying dark matter models. We focus on photon energies of 1, 10, and 50 GeV (relevant for the FERMI satellite) and consider different propagation parameters. Our main conclusion is that distinguishing annihilating from decaying dark matter may only be possible if the propagation parameters correspond to the most optimistic diffusion models. In addition, we point to examples where morphology can lead to an erroneous interpretation of the source injection energy.  相似文献   

5.
The possibility of γ-ray laser generation by the radiation of wiggling electrons in a usual background laser is discussed.  相似文献   

6.
A mechanism of X- and γ-ray emission by relativistic electrons at interaction with astrophysical objects (maser clouds) is considered and the contribution of this mechanism to the formation of a continuous spectrum and its correlation with radio-wave radiation are investigated. The radiation yield upon deexcitation of a quantum system by an electron exceeds that of “conventional” (i.e., without a change in the quantum-system state) bremsstrahlung at small nuclear charges (Z < 10) and may be about 8% of the total γ-ray intensity. It is shown that in the direction in which the γ-ray intensity increases, one should observe radio waves corresponding to a particular maser source.  相似文献   

7.
The microdipole mechanism of electromagnetic emission induced by a high-power γ-ray pulse is theoretically studied. The model of electromagnetic field generation has been developed and investigated. It is shown that conductivity affects the microdipole component of radiation only slightly, and the amplitude and waveform of the detected signal do not depend on the duration of the γ-ray pulse.  相似文献   

8.
Recently, many new dwarf spheroidal satellites(dSphs) have been discovered by the Dark Energy Survey(DES). These dSphs are ideal candidates for probing for gamma-ray emissions from dark matter(DM) annihilation.However, no significant signature has been found by the Fermi-LAT dSph observations. In this work, we reanalyze the Fermi-LAT Pass 8 data from the direction of Reticulum II, where a slight excess has been reported by some previous studies. We treat Reticulum II(DES J0335.6-5403) as a spatially extended source, and find that no significant gamma-ray signature is observed. Based on this result, we set upper-limits on the DM annihilation cross section.  相似文献   

9.
68Ga decays to the excited states of68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the69Ga(n,2n)68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is(2.72±0.16)%.  相似文献   

10.
68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077 keV γ-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011, JIANG Li-Yang deduced a new value for 1077 keV γ-ray emission probability by measuring the 69Ga(n,2n) 68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077 keV γ-ray is (2.72± 0.16)%.  相似文献   

11.
A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intra- cavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.  相似文献   

12.
The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser field. Then the conditions for modulation instability and the temporal growth rate are obtained analytically. In order to compare with the usual electron–ion plasmas, the effect of positron concentration is considered. It is found that the increase in positron-to-electron density ratio shifts the instability region towards higher vertical wave numbers but does not cause displacement along the parallel wave number direction, and the growth rate increases as the positron-to-electron density ratio increases.  相似文献   

13.
We present a new mechanism of energy gain of electrons accelerated by a laser pulse.It is shown thatwhen the intensity of an ultrafast intense laser pulse decreases rapidly along the direction of propagation,electrons leaving the pulse experience an action of ponderomotivc deceleration at the descending part ofa lower-intensity laser field than acceleration at the ascending part of a high-intensity field, thus gain netenergy from the pulse and move directly forward. By means of such a mechanism, a megaelectronvoltelectron beam with a bunch length shorter than 100 fs could be realized with an ultrafast(≤30 fs),intense (>10~(19)W/cm~2)laser pulse.  相似文献   

14.
By calculating the momenta of a coupled set of nonlinear equations of laserpulse-plasma wave interaction in the weak relativistic approximation,the conditions for fre-quency up-shift have been found.That the energy change of the pulse due to frequency shiftis compensated by the change of plasma wave energy results in photon number conservation.Some factors that affect the frequency up-shift are studied.It is also found that the laser pulsecan be compressed when it is located near the valley of plasma density perturbation and ifsome threshold value of the plasma wave field is exceeded.  相似文献   

15.
The interaction between a laser-produced aluminum plasma and the ambient air, at a pressure of 173.3 Pa, is studied at the plasma thermalization stage. A two-dimensional approach is developed to solve the Navier–Stokes equations, where a finite volume discretization allows for obtaining a numerical solution. The simulation runs over a time representing 10 μs of plasma expansion. It is shown that the shock and drag models are good approximations for the two successive regimes after the initial strong expansion stage, and the calculation makes evident the plume sharpening on the axial direction before its confinement by the ambient gas, which is in good agreement with the experimental observation.  相似文献   

16.
Implicit particle-in-cell codes offer advantages over their explicit counterparts in that they suffer weaker stability constraints on the need to resolve the higher frequency modes of the system. This feature may prove particularly valuable for modeling the interaction of high-intensity laser pulses with overcritical plasmas, in the case where the electrostatic modes in the denser regions are of negligible influence on the physical processes under study. To this goal, we have developed the new two-dimensional electromagnetic code ELIXIRS (standing for ELectromagnetic Implicit X-dimensional Iterative Relativistic Solver) based on the relativistic extension of the so-called Direct Implicit Method [D. Hewett, A.B. Langdon, Electromagnetic direct implicit plasma simulation, J. Comput. Phys. 72 (1987) 121–155]. Dissipation-free propagation of light waves into vacuum is achieved by an adjustable-damping electromagnetic solver. In the high-density case where the Debye length is not resolved, satisfactory energy conservation is ensured by the use of high-order weight factors. In this paper, we first derive the electromagnetic direct implicit method as a simplified Newton scheme. Its linear properties are then investigated through numerically solving the relation dispersions obtained for both light and plasma waves, accounting for finite space and time steps. Finally, our code is successfully benchmarked against explicit particle-in-cell simulations for two kinds of physical problems: plasma expansion into vacuum and relativistic laser–plasma interaction. In both cases, we will demonstrate the robustness of the implicit solver for crude discretizations, as well as the gains in efficiency which can be realized over standard explicit simulations.  相似文献   

17.
Recently, we developed an optodynamic experimental technique that makes it possible to measure the linear momentum obtained by a metal target sample in the shape of a rod during a nanosecond laser pulse interaction in the ablative regime. The height of the rod’s rear end axial step-like displacement, caused by the first reflection of the laser-generated ultrasonic wave, is proportional to the linear momentum acquired by the rod. In comparison with commonly used ballistic methods, we can determine the acquired momentum on a much shorter time scale corresponding to the wave transition time, from the front to the rear end of the rod. Using this method we investigated the ambient air pressure dependence on the formation of linear momentum over a laser intensity range, from the ablation threshold to values about ten times higher. Steel rods of various diameters were used to demonstrate the effect of an expanding blast wave which delivers additional momentum to the target, when the laser beam on the target surface is smaller than the target itself. The typical value of the acquired target momentum is on the order of μN s and 10 μN s/J for the momentum coupling coefficient.  相似文献   

18.
It was found that the electron density scale length of Sn plasma irradiated with a long duration CO2 laser pulse is much shorter than that predicted by the classical isothermal model. The experimentally observed small dominant region of in-band (2% bandwidth) 13.5-nm extreme ultraviolet (EUV) emission coincides with this constrained hydrodynamic behavior. The lower hydrodynamic efficiency may come from the strongly inhibited ablation mass and makes a CO2-laser-produced Sn plasma suitable as an EUV radiation source.  相似文献   

19.
I.IntroductionThegenerationofacousticpulsebylaserirradiationofametalsurfacewasfirstsuggestcdbyWhitein1963[1l.SincethatdateLaserU1trasoundtechniquchasbeendcvclopedrapidly.Becausethistechniquehasanumberoftechnicalfcatures,suchasnon-contact,highbandwidth,highhme-spacia1resolution,quantitativeteshng,generationoflongitudinal,shcarandRay1cighwaves(simu1taniously),andsoon,ithasbccnwidelyapp1icdtomcasurementsofmatcrialproperties,detectionofdefects,andcalibrationoftransd.ccrsl'-'o].Inordertodcve1opth…  相似文献   

20.
Forward fast protons are generated by the moderate-intensity laser--foil interaction. Protons with maximum energy 190~keV are measured by using magnetic spectrometer and CR-39 solid state track detectors along the direction normal to the rear surface. The experimental results are also modeled by the particle-in-cell method, investigating the time-varying electron temperature and the rear sheath field. The temporal and spatial structure of the sheath electrical field, revealed in the simulation, suggests that these protons are accelerated by target normal sheath acceleration (TNSA) mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号