首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-vacancy (NV) defect centers in diamond have recently emerged as promising candidates for a number of applications in the fields of quantum optics and quantum information, such as single photon generation and spin qubit operations. The performance of these defect centers can strongly be enhanced through coupling to plasmonic and photonic nanostructures, such as metal particles and optical microcavities. Here, we demonstrate the controlled assembly of such hybrid structures via manipulation with scanning near-field probes. In particular, we investigate the plasmonic enhancement of the single photon emission through coupling to gold nanospheres as well as the coupling of diamond nanocrystals to the optical modes of microsphere resonators and photonic crystal cavities. These systems represent prototypes of fundamental nanophotonic/plasmonic elements and provide control on the generation and coherent transfer of photons on the level of a single quantum emitter.  相似文献   

2.
We propose a hybrid resonance architecture in which a plasmonic element is coupled to a silicon-on-insulator photonic crystal nanobeam cavity operating at telecom wavelengths. It benefits from the combined characteristics of the photonic cavity and the plasmonic element, and exploits the unique properties of Fano resonances resulting from interactions between the continuum and the localized cavity states. As confirmed through 3D time-domain simulations, a strong cavity mode damping by the plasmonic element offers mechanisms of controlling a probe signal propagating in the nanobeam. It makes possible to create optical switching devices and logic gates relying on any optical nonlinear effect.  相似文献   

3.
Owing to the unique optical properties high-Q photonic crystal nanobeam microcavities have been demonstrated in a variety of materials. In this paper the design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities is investigated using the three-dimensional plane-wave expansion method and finite-difference time-domain method. We first discuss the design of high-Q nanobeam microcavities in silicon-on-insulator, after which the polymer is introduced into the air void to form the hybrid structures. Quality factor as high as 1 × 104 has been obtained for our silicon-polymer hybrid nanobeam microcavities without exhaustive parameter examination. In addition the field distribution of resonant mode can be tuned to largely overlap with polymer materials. Because of the overwhelmingly large Kerr nonlinearity of polymer over silicon, the application in all-optical switching is presented by studying the shift of the resonant frequency on the change of refractive index of polymer. The minimum switching intensity of only 0.37 GW/cm2 is extracted for our high-Q hybrid microcavities and the corresponding single pulse energy is also discussed according to the pumping methods. The total switching time is expected to be restricted by the photon lifetime in cavity due to the ultrafast response speed of polymer. Our silicon-polymer hybrid nanobeam microcavities show great promise in constructing small-sized all-optical devices or circuits with advantages of possessing low-power and ultrafast speed simultaneously.  相似文献   

4.
Chirality, which describes the broken mirror symmetry in geometric structures, exists macroscopically in our daily life as well as microscopically down to molecular levels. Correspondingly, chiral molecules interact differently with circularly polarized light exhibiting opposite handedness(left-handed and right-handed). However, the interaction between chiral molecules and chiral light is very weak. In contrast, artificial chiral plasmonic structures can generate "super-chiral" plasmonic near-field, leading to enhanced chiral light-matter(or chiroptical) interactions. The "super-chiral" near-field presents different amplitude and phase under opposite handedness incidence, which can be utilized to engineer linear and nonlinear chiroptical interactions. Specifically,in the interaction between quantum emitters and chiral plasmonic structures, the chiral hot spots can favour the emission with a specific handedness. This article reviews the state-of-the-art research on the design, fabrication and chiroptical response of different chiral plasmonic nanostructures or metasurfaces. This review also discusses enhanced chiral light-matter interactions that are essential for applications like chirality sensing, chiral selective light emitting and harvesting. In the final part, the review ends with a perspective on future directions of chiral plasmonics.  相似文献   

5.
The experimental spectral dependence of the intensity of the second harmonic (SH) generated in microcavities based on porous silicon photonic crystal demonstrates resonant intensity enhancement (by a factor of ~2×102) in the vicinity of the cavity mode and at the edges of the photonic band gap. The enhancement is due to the combined effect of pump radiation localization inside the microcavity, multiple SH interference in the photonic crystal, and two-photon resonance of the porous silicon quadratic susceptibility at the SH frequency.  相似文献   

6.
Based on colloidal crystals of various dimensionality, hybrid metal-dielectric plasmonic-photonic heterocrystals have been prepared. It has been shown that the spectra of optical transmission of heterocrystals are mostly controlled by the sum of contributions of composing plasmonic and photonic crystals. At the same time, there are a number of phenomena caused by the mutual effect of heterostructure components, which lead to a deviation of observed optical properties from the linear superposition of responses of these crystals. In particular, it has been found that the anomalous transmission controlled by the plasmonic crystal decreases with increasing the dimensionality of the photonic crystal attached to it. At the same time, light reflection on a metallized surface changes light diffraction in photonic crystals and leads to Fabry-Perot oscillation amplification. It has been assumed that an intermediate layer is formed, in which Bloch modes of the photonic crystal and surface plasmon-polaritons of the plasmonic crystal are hybridized.  相似文献   

7.
Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nano-antennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nano-antenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light.  相似文献   

8.
The formalism of nonlinear transfer matrices is used to develop a phenomenological model of a cubic nonlinear-optical response of one-dimensional photonic crystals and microcavities. It is shown that third-harmonic generation can be resonantly enhanced by frequency-angular tuning of the fundamental wave to the photonic band-gap edges and the microcavity mode. The positions and amplitudes of third-harmonic resonances at the edges of a photonic band gap strongly depend on the value and sign of the dispersion of refractive indexes of the layers that constitute the photonic crystal. Model calculations elucidate the role played by phase matching and spatial localization of the fundamental and third-harmonic fields inside a photonic crystal as the main mechanisms of enhancement of third-harmonic generation. The experimental spectrum of third-harmonic intensity of a porous silicon microcavity agrees with the calculated results.  相似文献   

9.
设计了一种由微米尺度二维光子晶体构成的六通道波分复用系统。该系统包括利用光子晶体线缺陷实现的波导部分和利用光子晶体微腔实现的频率选择部分。采用时域有限差分方法(FDTD),研究光在该系统中的传输特性。  相似文献   

10.
We analyzed the frequency and quality factor of microcavities on a two-dimensional photonic crystal, using a Fourier series expansion method combined with perfectly matched layers (PMLs). Numerical examples are demonstrated and discussed to show that the resonant frequency and the quality factor Q values can be calculated by the present method using PMLs.  相似文献   

11.
Ung B  Skorobogatiy M 《Optics letters》2011,36(13):2527-2529
A nanostructured chalcogenide-metal optical fiber is proposed. This hybrid nanofiber is embedded with a periodic array of triangular-shaped deep-subwavelength metallic nanowires set up in a bowtie configuration. Our simulations show that the proposed nanostructured fiber supports a guided plasmonic mode enabling both subwavelength field confinement and extreme nonlinear light-matter interactions, much larger than a bare chalcogenide nanowire of comparable diameter. This is all achieved with less than 3% by volume of metal content.  相似文献   

12.
Hybrid plasmonic waveguides based on a surface oxidized dielectric nanowire placed on a metal surface can facilitate simultaneously deep subwavelength mode confinement and large propagation length. Directional coupling based on such waveguides are theoretically investigated. Much lower crosstalk is noticed for such hybrid plasmonic waveguides compared to conventional waveguides based on bare dielectric nanowires. Some modifications, such as vertically placing the metal surfaces or using a metallic block between the nanowires, are studied which can further reduce the crosstalk between two waveguides. The proposed low crosstalk structures based on hybrid plasmonic waveguides can provide a simple platform for plasmonic integration which can at the same time easily interface with traditional photonic circuits.  相似文献   

13.
Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.  相似文献   

14.
The understanding of light‐matter interactions at the nanoscale lays the groundwork for many future technologies, applications and materials. The scope of this article is the investigation of coupled photonic‐plasmonic systems consisting of a combination of photonic microcavities and metallic nanostructures. In such systems, it is possible to observe an exceptionally strong coupling between electromagnetic light modes of a resonator and collective electron oscillations (plasmons) in the metal. Furthermore, the results have shown that coupled photonic‐plasmonic structures possess a considerably higher sensitivity to changes in their environment than conventional localized plasmon sensors due to a plasmon excitation phase shift that depends on the environment.  相似文献   

15.
李梓维  胡义涵  李瑜  方哲宇 《中国物理 B》2017,26(3):36802-036802
In the last decade, the rise of two-dimensional(2D) materials has attracted a tremendous amount of interest for the entire field of photonics and opto-electronics. The mechanism of light–matter interaction in 2D materials challenges the knowledge of materials physics, which drives the rapid development of materials synthesis and device applications. 2D materials coupled with plasmonic effects show impressive optical characteristics, involving efficient charge transfer, plasmonic hot electrons doping, enhanced light-emitting, and ultrasensitive photodetection. Here, we briefly review the recent remarkable progress of 2D materials, mainly on graphene and transition metal dichalcogenides, focusing on their tunable optical properties and improved opto-electronic devices with plasmonic effects. The mechanism of plasmon enhanced light–matter interaction in 2D materials is elaborated in detail, and the state-of-the-art of device applications is comprehensively described. In the future, the field of 2D materials holds great promise as an important platform for materials science and opto-electronic engineering, enabling an emerging interdisciplinary research field spanning from clean energy to information technology.  相似文献   

16.
二维点缺陷正方光子晶体的微腔结构   总被引:2,自引:2,他引:0       下载免费PDF全文
通过平面波展开法对由Al2O3介质棒在空气背景介质中构成含有点缺陷的二维正方光子晶体微腔结构进行研究,计算得出缺陷态能带以及缺陷态模场分布。缺陷模对应的电磁波波长为470~476nm。对该微腔结构的品质因数的求解,得出缺陷态光谱曲线。在光谱曲线中,随着传输波长的增大,将产生几个峰值,并且在475nm处的波动最为明显,反映出在475nm附近的电磁波段在缺陷处的光强较大。进一步利用全矢量等效折射率法研究该结构缺陷模频率的稳定性,得出等效折射率的变化曲线。从等效折射率变化曲线可以看出,当传输波长达到475nm时,该结构已经达到稳定传输的区域。含缺陷模的二维光子晶体微腔结构在光子晶体发光二极管以及高阈值半导体激光器等方面有着重要的应用价值。  相似文献   

17.
提出了一种由2-D光子晶体构成的四信道波分复用系统。该系统包括利用光子晶体的线缺陷实现的波导部分和利用光子晶体微腔实现的频率选择部分。采用时域有限差分(FDTD)方法,研究了光在含点缺陷(即微腔)和线缺陷(即波导)的光子晶体中的传输特性,并给出了仿真结果。计算结果表明,该结构可以实现波长为λ=1550nm附近的四信道波分复用。  相似文献   

18.
We report an experimental study of the excitonic properties of bulk ZnO and the strong coupling observation in hybrid ZnO-based microcavities. The strong coupling is highlighted with a Rabi splitting value of about 70 meV. The influence of the excitonic and band-to-band absorptions on the observation of this strong light-matter coupling regime is analysed through the evolution of the reflectivity spectra obtained on microcavities with different active layer thicknesses.  相似文献   

19.
This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly polarized and radially polarized modes because the sensing performance of the sensor based on both modes is relatively high, which will be useful for selecting the modes to make the detection accurately. The sharp single resonant peaks of the linearly polarized mode and radially polarized mode, are stronger and more sensitive to the variation of analyte refractive index than that of any other polarized mode in this kind of photonic crystal fiber. For linearly polarized mode and radially polarized mode, the maximum sensitivities of 10448.5nm per refractive index unit and 8230.7nm per refractive index unit can be obtained, as well as 949.8 and 791.4 for figure of merits in the sensing range of 1.33-1.45, respectively. Compared with the conventional Au-metalized surface plasmon resonance sensors, our device is better and can be applied as a biosensor.  相似文献   

20.
We review recent experimental and theoretical studies of the ultrafast and nonlinear optical response of metallic nanostructures on top of dielectric substrates and slab waveguides where plasmon hybridization is a key ingredient. In a first three-pulse all-optical control experiment a hybrid plasmonic mode is turned on or off only a few tens of femtoseconds after its excitation. A second experiment concentrates on the origin of the nonlinear response in a metallo-dielectric photonic crystal structure. We show that the shape of the nonlinear optical spectra provides unambiguous information about the nonlinear optical contribution of the metallic as well as the dielectric part of the structure. Furthermore, we discuss the influence of slow-light on the nonlinear response. All experimental results agree perfectly with numerical scattering matrix calculations as well as simulations based on a classical harmonic oscillator model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号