首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influences of the substituent base position on the excited state intramolecular proton transfer fluorescence properties were explored in 2-(2'-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP)and HPIP's derivatives(5'Br-HPIP and 6'BrHPIP).And the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods were used to calculate the molecule structures.The calculated results showed that the influence of 5'Br-HPIP on the fluorescence intensity is stronger than that of 6'Br-HPIP.The fluorescence emission peak of 5'Br-HPIP occurred a blue shift compared with HPIP,and 6'BrHPIP exhibited an opposite red shift.The change of the fluorescence emission peak was attributed to the decrease of the energy gap from 6'Br-HPIP to 5'Br-HPIP.Our work on the substituent position influence could be helpful to design and develop new materials.  相似文献   

2.
Zhengran Wang 《中国物理 B》2022,31(4):48202-048202
Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.  相似文献   

3.
We theoretically investigate the excited state behaviors of the novel fluorophore tetraphenylethene‐2‐(2′‐hydroxyphenyl)benzothiazole (TPE‐HBT), which was designed based on the intersection of TPE and HBT, using density functional theory and time‐dependent density functional theory methods. Compared with previous experimental results about fluorescence peaks, our calculated results are in good agreement with experimental data, which further confirms that the theoretical level we used is reasonable. Furthermore, our results confirm that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which is distinctly monitored by the infrared spectra and the potential energy curves. In addition, the calculation of highest occupied molecular orbital and lowest unoccupied molecular orbital reveals that the electron density change of proton acceptor because of the intramolecular charge transfer (ICT) process in the S1 state induces the ESIPT. Moreover, the transition density matrix is worked out to facilitate deeper insight into the ESIPT coupled ICT process. It is hoped that the present work not only elaborates the ESIPT coupled ICT phenomenon and corresponding mechanisms for the TPE‐HBT but also may be helpful to design and develop new materials and applications involved in TPE‐HBT systems in future.  相似文献   

4.
Hong-Bin Zhan 《中国物理 B》2022,31(3):38201-038201
The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HClO (HBT-ClO) is discussed based on the density functional theory (DFT) and time-dependent density functional theory (TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis.  相似文献   

5.
本文应用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法,研究了具有激发态分子内质子转移(ESIPT)特性的3-羟基黄酮(3HF)及其两种氰基和氨基取代衍生物(3HF-CY和3HF-AM)作为水溶液中Al3+离子检测的荧光探针分子结构和电子光谱性质. 计算得到了与ESIPT过程相关的键长、键角以及势能曲线,模拟计算了单独分子和分子@Al3+复合物的吸收和荧光光谱. 结果表明,氰基或氨基的引入均会抑制3HF的质子在基态(S0)或激发态(S1)的转移. 而从得到的吸收光谱可以看出,在3HF中引入吸电子基团氰基可以引起其吸收光谱的红移,而给电子基团氨基的引入则出现相反现象. 此外,与3HF-AM的荧光光谱相比,3HF-AM@Al3+复合物发生了75.88 nm的蓝移,由此推测3HF-AM与水中的Al3+反应后,在光激发下溶液荧光会由绿色转变为紫色,表明3HF-AM分子可以作为有效检测水中Al3+的荧光探针.  相似文献   

6.
报道了在氮分子激光泵浦下,激发态分子内质子转移分子2-(2'-羟基苯基)间氮杂氧茚(HBO)环乙烷溶液放大的自发辐射(ASE)实验和理论研究。在环己烷溶液中,HBO的增益系数α(510um)约为1.2cm-1。在建立了HBO激发态分子内质子转移(ESIPT)的放大的自发辐射动态模型基础上,通过数值模拟得到了HBO的增益光谱和放大的自发辐射光谱,计算结果与实验很好相符,证实了HBO的酮式异构体的基态寿命更接近于260ns而非亚纳秒级。  相似文献   

7.
Shen-Yang Su 《中国物理 B》2022,31(3):38202-038202
Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer (ESIPT) process and photophysical properties of 2-(2'-hydroxyphenyl)-4-chloromethylthiazole (HCT) are studied. The electron-donating group (CH3, OH) and electron-withdrawing group (CF3, CHO) are introduced to analyze the changes of intramolecular H-bond, the frontier molecular orbitals, the absorption/fluorescence spectra, and the energy barrier of ESIPT process. The calculation results indicate that electron-donating group strengthens the intramolecular H-bond in the S1 state, and leads to an easier ESIPT process. The electron-withdrawing group weakens the corresponding H-bond and makes ESIPT process a little harder. Different substituents also affect the photophysical properties of HCT. The electron-withdrawing group (CF3, CHO) has a little effect on electronic spectra. The electron-donating group (CH3, OH) red-shifts both the absorption and fluorescence emission peaks of HCT, respectively, which causes the Stokes shift to increase.  相似文献   

8.
In this present work, we theoretically study the excited state intramolecular proton transfer (ESIPT) mechanism about a quinoline/isoquinoline‐pyrazole isomer QP‐I system. Compared with previous experimental results, our calculated results reappear previous data, which further confirm the theoretical level we used is reasonable. We mainly adopt 2 kinds of solvents (nonpolar cyclohexane and polar acetonitrile) to explore solvents effects on this system. Through reduced density gradient (RDG) function, the intramolecular hydrogen bond N1─H2···N3 has been confirmed existing in both S0 and S1 states, although the distance between H2 and N3 is not short. In addition, the strengthening N1─H2···N3 in the S1 state provides possibility for ESIPT. Explorations about charge redistribution reveal the trend of ESIPT, and frontier orbital gap reflects the reactivity in polar and nonpolar solvents. The constructing potential energy curves reveal that potential energy barriers could be controlled and regulated by solvent polarity.  相似文献   

9.
The time‐dependent density functional theory method was performed to investigate the excited‐state hydrogen‐bonding dynamics of N‐(2‐hydroxyethyl)‐1,8‐naphthalimide (2a) and N‐(3‐hydroxyethyl)‐1,8‐naphthalimide (3a) in methanol (meoh) solution. The ground and excited‐state geometry optimizations, electronic excitation energies, and corresponding oscillation strengths of the low‐lying electronically excited states for the complexes 2a + 2meoh and 3a + 2meoh as well as their monomers 2a and 3a were calculated by density functional theory and time‐dependent density functional theory methods, respectively. We demonstrated that the three intermolecular hydrogen bonds of 2a + 2meoh and 3a + 2meoh are strengthened after excitation to the S1 state, and thus induce electronic spectral redshift. Moreover, the electronic excitation energies of the hydrogen‐bonded complexes in S1 state are correspondingly decreased compared with those of their corresponding monomer 2a and 3a. In addition, the intramolecular charge transfer of the S1 state for complexes 2a + 2meoh and 3a + 2meoh were theoretically investigated by analysis of molecular orbital. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
报道了在调Q的Nd∶YAG激光器泵浦下用Z扫描技术对具有分子内质子转移(ESIPT)特性的分子2(2′羟基苯基)间氮杂氧茚(HBO)的光学非线性的研究。结果表明:对1.06μm的光,HBO无非线性吸收,其三阶非线性极化率不随入射光强而变;而在0.53μm的激光作用下,HBO表现出显著的双光子吸收,其双光子吸收系数随泵浦光强增强而减小,而其三阶非线性极化率实部则随泵浦光强的增强而增大。在建立双光子泵浦产生激发态分子内质子转移动态模型的基础上,通过理论计算很好地解释了实验现象  相似文献   

11.
In this work, we present the optimized ground state geometrical structures, electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated Tce‐CH3COCOOH and Tce‐CH3C(OH)2COOH as well as their corresponding hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O through time‐dependent density functional theory method. It is found that the intermolecular hydrogen bonds C=O···H‐O are strengthened in the electronically excited states of the hydrogen‐bonded dimers Tce‐CH3COCOOH‐H2O and Tce‐CH3C(OH)2COOH‐H2O, in that the excitation energies of the related excited states for the hydrogen‐bonded dimers are decreased compared with those of the corresponding monomers. The calculated results are consistent with the rules that are first demonstrated by Zhao on the excited‐state hydrogen bonding dynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
通过稳态光谱实验和量子化学计算相结合,研究了黄芩素激发态质子转移耦合电荷转移的反应. 实验和计算中S1态吸收峰的缺失表明S1态是暗态. S1暗态导致在实验中观察不到黄芩素在乙醇溶液中的荧光峰,且固体的荧光峰很弱. 黄芩素分子的前线分子轨道和电荷差异密度表明S1态是电荷转移态,然而S2态是局域激发态. 计算的黄芩素分子的势能曲线在激发态只有一个稳定点,这表明了黄芩素激发态分子内质子转移的过程是一个无  相似文献   

13.
The structural and photophysical properties of four heteroleptic Iridium (III) complexes, based on 1-phenylpyrazole ligand, have been investigated theoretically. The effect of chemical substitution on the absorption and the emission spectra of the complexes has been studied and compared with the experimental data. We observe a significant structural change in the lowest triplet excited state as compared to the ground singlet state. We compute the emission wavelength of the complexes by considering the spin-orbit coupling. Using these understandings, we predict two new complexes having deeper blue emission which are supposed to be better efficient OLED materials.  相似文献   

14.
尚小明  汤国庆  张桂兰  陈文驹 《光学学报》1996,16(10):1371-1378
报道了以N2激光为泵浦光源,获得激发态分子内质子转移(ESIPT)分子HBO的激光输出现象。其激光转换效率约为17%,调谐范围为495~540nm,最强的输出波长在510nm。以HBO的激发态分子内质子转移的光物理和光化学过程为基础,建立了HBO产生激光的动态模型,数值模拟了在宽带和窄带情况下激光输出的光谱特性和时间特性,理论计算值与实验观测值很好相符,同时证实了激发态分子内质子转移分子的激光脉冲宽度依赖于激发态分子内质子转移分子的酮式异构体的基态S′0的寿命  相似文献   

15.
The excited states of single metal atom (X = Co, Al and Cu) doped boron nitride flake (MBNF) B15N14H14-X and pristine boron nitride (B15N15H14) are studied by time-dependent density functional theory. The immediate effect of metal doping is a red shift of the onset of absorption from about 220 nm for pristine BNF to above 300 nm for all metal-doped variants with the biggest effect for MBNF-Co, which shows appreciable intensity even above 400 nm. These energy shifts are analysed by detailed wavefunction analysis protocols using visualisation methods, such as the natural transition orbital analysis and electron-hole correlation plots, as well as quantitative analysis of the exciton size and electron-hole populations. The analysis shows that the Co and Cu atoms provide strong contributions to the relevant states whereas the aluminium atom is only involved to a lesser extent.  相似文献   

16.
Six styryl pyrazine compounds, some of which have steric hindrance to rotate and some have twist freedom, were synthesized in this work. The effects of solvent polarity and viscosity on the photophysical and luminescent behavior of these compounds were preliminarily studied. Results indicated that the blocking of the double-bond twist by a sufficiently rigid bridge increases fluorescence quantum yields dramatically and the rotation of a single bond connecting the double bond and the phenyl group is favorable to form a single-bond twisted state (T*), which is the state responsible for the main channel of fluorescence emission. The reason for the higher fluorescence quantum yield of distyryl pyrazine was thought to be involved with the lower probability of transition from the Frank-Condon state (S 1) to the phantom state (P*). Studies were also extended to develop a novel probe to detect the special microviscosity.  相似文献   

17.
The photophysical properties of four Ir(III) complexes have been investigated by means of the density functional theory/time-dependent density functional theory (DFT/TDDFT). The effect of the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption and phosphorescent properties has been studied. The theoretical calculation shows that the lowest-lying singlet absorptions for complexes 14 are located at 387, 385, 418 and 386 nm, respectively. For 14, the phosphorescence at 465, 485, 494 and 478 nm is mainly attributed to the LUMO → HOMO and LUMO → HOMO-1 transition configurations characteristics. In addition, ionisation potential (IP), electron affinities (EAs) and reorganisation energy have been investigated to evaluate the charge transfer and balance properties between hole and electron. The balance of the reorganisation energies for complex 3 is better than others. The difference between hole transport and electron transport for complex 3 is the smallest among these complexes, which is beneficial to achieve the hole and electron transfer balance in emitting layer.  相似文献   

18.
Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.  相似文献   

19.
The structural dynamics of 4‐pyrimidone (4PMO) in the A‐ and B‐band absorptions was studied by using the resonance Raman spectroscopy combined with quantum chemical calculations to better understand whether the excited state intramolecular proton‐transfer (ESIPT) reaction occurs in Franck–Condon regions or not. The transition barrier for the ground state proton‐transfer tautomerization reaction between 3(H) (I) and hydroxy (II) was determined to be 165 kJ·mol−1 in vacuum on the basis of the B3LYP/6‐311++G(d,2p) level of theory calculations. Two ultraviolet absorption bands of 4PMO were, respectively, assigned as πH→π*L and πH→π*L+1 transitions. The vibrational assignments were done on the basis of the Fourier transform (FT)‐Raman and FT‐infrared (IR) measurements, the density‐functional theory computations and the normal mode analysis. The A‐ and B‐band resonance Raman spectra of 4PMO were measured in water, methanol and acetonitrile. The structural dynamics of 4PMO was obtained through the analysis of the resonance Raman intensity pattern. We discuss the similarities in the structural dynamics of 4PMO and 2‐thiopyrimidone (2TPM), and the results were used to correlate to the intramolecular hydrogen‐atom‐transfer process as observed by matrix‐isolation IR experiments for 4PMO. A variety of NH/CH bend modes + C = O stretch mode mark the hydrogen‐detachment‐attachment or ESIPT reaction initiated in Franck–Condon region for 4PMO and 2TPM. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号