首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The following ions [UO2(NO3)3], [UO2(ClO4)3], [UO2(CH3COO)3] were generated from respective salts (UO2(NO3)2, UO2(ClO4)3, UO2(CH3COO)2) by laser desorption/ionization (LDI). Collision induced dissociation of the ions has led, among others, to the formation of UO4 ion (m/z 302). The undertaken quantum mechanical calculations showed this ion is most likely to possess square planar geometry as suggested by MP2 results or strongly deformed geometry in between tetrahedral and square planar as indicated by DFT results. Interestingly, geometrical parameters and analysis of electron density suggest it is an UVI compound, in which oxygen atoms bear unpaired electron and negative charge.  相似文献   

2.
Two multiple-layer heterometallic MnII–AgI coordination polymers, {MnII(ampyz)(H2O)[Ag2I(CN)3][AgI(CN)2]·ampyz} n (1) and {[MnII(benzim)2[AgI(CN)2]2][(benzim)AgI(CN)]·H2O} n (2) where ampyz = 2-aminopyrazine and benzim = benzimidazole, have been prepared and structurally characterized. Compound 1 reveals a multiple-layer two-dimensional network with strong hexanuclear argentophilic interactions leading to an infinite three-dimensional framework. Compound 2 has an unprecedented double-layer two-dimensional squared grid-type network with (4,4) topology through AgI···AgI and π–π interactions between two adjacent squared layers. These double-layer networks of 2 are linked to others by π–π interactions, leading to a three-dimensional framework.  相似文献   

3.
A single crystal of [Pd(NH3)4]3[Ir(NO2)6]2·H2O double complex salt is studied by X-ray diffraction. Crystallographic characteristics are as follows: a = 21.0335(5) ?, b = 8.0592(2) ?, c = 21.3452(5) ?, β = 91.254(1)°, V = 3617.43(15) ?3, P21/c space group, Z = 4, d x = 2.714 g/cm3. Single-layer pseudohexagonal packing of complex anions is determined along the [−1 0 1] direction in the structure. Complex cations and crystallization water molecules are located between the mentioned layers.  相似文献   

4.
The title compound was synthesized by reaction of Cu(ClO4)2, picolinic acid and carbamide in C2H5OH/CH3CN solution, and characterized by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group Pbca with a=14.0481(8), b=9.0130(5), c=18.626(1)?, V=2358.3(2)?3Z=4, Dx=1.771g·cm-3, μ=1.235mm-1 and F(000)=1276. The final R factor is 0.0440 for 1434 observed reflections. The X-ray analysis revealed that the copper(Ⅱ) atom is coordinated by two picolinic ligands in the equatorial plane, while the two oxygen atoms of perchlorate occupy the axial positions of octahedron with lengthened Cu-O distances, resulting in a 4+2 elongated octahedral environment. In the compound, there also exist two protonated carbamide cations for charge balance. CCDC: 195354.  相似文献   

5.
Complexes Ph3(n-Pr)P2+[CoI4]2− (I) and [Ph3(n-Am)P]2+ [CoI4]2− (II) were synthesized by reactions of triphenyl(alkyl)phosphonium iodide with cobalt(II) iodide in acetone. According to the X-ray diffraction data, complexes I and II consist of tetrahedral triphenyl(alkyl)phosphonium cations (for I, P-C is 1.787(4)–1.804(4) ? and CPC is 106.73(18)°–111.4(18)°; for II P-C is 1.786(6)–1.802(6) ? and CPC is 107.6(3)°–111.7(3)°) and [CoI4]2− anions (Co-I 2.5923(6)–2.6189(6) ?, ICoI 101.86(2)°–113.25(2)° for I; Co-I 2.5899(9)–2.6171(9) 107.01(3)°–110.47(3)° for II).  相似文献   

6.
In order to determine the features of the structure of double complex salts (DCSs) of [Cr(NH3)5Cl]×[MCl4nH2O, where M = Pd, Pt, n = 0, 1, the DCS solid solutions of palladium and platinum with isostructural DCSs containing the chloropentaammine rhodium cation, [Cr(NH3)5Cl] x [Rh(NH3)5Cl]1−x [MCl4nH2O, where x = 0.01–0.2, are synthesized and studied by the EPR method. DCSs with the isostructural chloropentaammine rhodium cation are used as a diluter for magneto concentrated systems. It is shown that DCS of platinum and anhydrous DCS of palladium have the identical environment of chromium ions. The EPR spectra of chromium ions for these compounds are described by the following spin Hamiltonian parameters: S = 3/2, g xx = 1.987, g yy = 1.987, g zz = 1.985, D = 1660 Gs, E = 235 Gs. For the palladium complex containing crystalline water, the EPR spectra of chromium ions are described by the parameters: S = 3/2, g xx = 1.984, g yy = 1.984, g zz = 1.984, D = 1060 Gs, E = 350 Gs. A decrease in the crystal field parameters for the aqueous palladium complex is caused by a redistribution of the electron density to the oxygen atom in the second sphere of the chromium ion environment.  相似文献   

7.
IR and single-crystal X-ray diffraction study are carried out for compound, C36H112Cl9Fe3N18O8P6(I). It crystallizes in the orthorhombic space group P212121 with a = 14.2992(3), b = 21.4351(4), c = 25.5407(5) ?, V = 7828.3(3) ?3, ρcalcd = 1.553 g/cm3, Z = 4. The FeCl fragment is coordinated with chlorine atom of two water molecules and three HMPA molecules to form a cation, with a distorted octahedral coordinate geometry. In the crystal I, the cation is linked with HMPA by the O-H…O hydrogen bond. The chiral crystal is formed through self-assembly even from achiral molecules.  相似文献   

8.
Two new double complex salts [Pd(NH3)4]3[Rh(NO2)6]2 (I) and [Pd(NH3)4]3[Rh(NO2)6]2·H2O (II) are synthesized and characterized. The techniques to produce one-phase residues of the salts are developed. The crystallographic data for I: a = 18.915(2) ?, V = 6767.4 ?3, F-43c space group, Z = 8, d x = 2.548 g/cm3; II: a = 21.160(6) ?, b = 8.085(7) ?, c = 21.363(4) ?, β = 91.71(4)°, V = 3661.1(6) ?3, P21/c space group, d x = 2.357 g/cm3. Thermal properties of the obtained compounds in the hydrogen and helium atmosphere are studied. It is shown that the final product of their decomposition both in the inert and reducing atmosphere is a powder consisting of bimetallic nanosized particles (nanoalloy) of Pd0.59Rh0.41 (Fm-3m space group, a = 3.856(2) ?, crystallite size of 8–11 nm).  相似文献   

9.
The sandwich-type [Na(UO2)2(H2O)4(BiW9O33)2]13− uranium (VI) has been synthesized by reacting the trivacant species of B-α-[BiW9O33]9− with and investigated by IR and UV–Vis spectroscopy, and elemental analysis. The X-ray single crystal analysis was carried out on Na13[Na(UO2)2(H2O)4(BiW9O33)2] · 33H2O (I) which crystallizes in the orthorhombic system, space group Pna21 with a = 33.8454(19) ?, b = 21.1484(12) ?, c = 13.2403(7) ?, α = 90°, β = 90°, γ = 90°, and Z = 4. The polyanion consists of two lacunary B-α-[BiW9O33]9− groups which sandwich two uranyl cations and one sodium cation. The uranium atoms adopt distorted pentagonal–bipyramidal coordination, achieved by two equatorial bonds to each BiW9O33 unit and one external water ligand. The coordination of each uranium atom is evident by the shift of νas(W–Ob–W) and νas(Bi–O) stretching vibrational bonds. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Complexes [Me3EtN]2+[CoI4]2− (I) and [Me3EtN]2+[CoI4]2− (II) were synthesized by reacting trimethylalkylammonium iodide with cobalt(II) iodide in acetone. According to X-ray diffraction data, complexes I and II consist of tetrahedral tetraalkylammonium cations (for I, N-C is 1.481(5)–1.590(8) CNC is 107.3(3)°–111.6(3)°; for II, N-C is 1.485(8)–1.506(10) ? and CNC is 106.9(7)°–111.7(5)°) and [CoI4]2− anions (for I, Co-I is 2.5951(5)–2.6127(5) ? and ICoI is 104.67(2)°–113.23(2)°; for II, Co-I is 2.5914(8)–2.5943(9) ? and ICoI is 107.05(2)°–114.42(5)°).  相似文献   

11.
Unravelling the atomic structures of small gold clusters is the key to understanding the origin of metallic bonds and the nucleation of clusters from organometallic precursors. Herein we report the X‐ray crystal structure of a charge‐neutral [Au18(SC6H11)14] cluster. This structure exhibits an unprecedented bi‐octahedral (or hexagonal close packing) Au9 kernel protected by staple‐like motifs including one tetramer, one dimer, and three monomers. Until the present, the [Au18(SC6H11)14] cluster is the smallest crystallographically characterized gold cluster protected by thiolates and provides important insight into the structural evolution with size. Theoretical calculations indicate charge transfer from surface to kernel for the HOMO–LUMO transition.  相似文献   

12.
Decreasing the core size is one of the best ways to study the evolution from AuI complexes into Au nanoclusters. Toward this goal, we successfully synthesized the [Au18(SC6H11)14] nanocluster using the [Au18(SG)14] (SG=L ‐glutathione) nanocluster as the starting material to react with cyclohexylthiol, and determined the X‐ray structure of the cyclohexylthiol‐protected [Au18(C6H11S)14] nanocluster. The [Au18(SR)14] cluster has a Au9 bi‐octahedral kernel (or inner core). This Au9 inner core is built by two octahedral Au6 cores sharing one triangular face. One transitional gold atom is found in the Au9 core, which can also be considered as part of the Au4(SR)5 staple motif. These findings offer new insight in terms of understanding the evolution from [AuI(SR)] complexes into Au nanoclusters.  相似文献   

13.
In this work, the effects of thiolate ligands (‐SR, e.g., chain length and functional moiety) on the accessibility and catalytic activity of thiolate‐protected gold nanoclusters (e.g., Au25(SR)18) for 4‐nitrophenol hydrogenation is reported. The data suggest that Au25(SR)18 bearing a shorter alkyl chain shows a better accessibility to the substrates (shown by shorter induction time, t0) and a higher catalytic activity (shown by higher apparent reaction rate constant, kapp). The functional moiety of the ligands is another determinant factor, which clearly suggests that ligand engineering of Au25(SR)18 would be an efficient platform for fine‐tuning its catalytic properties.  相似文献   

14.
The assembly of atomically precise metal nanoclusters offers exciting opportunities to gain fundamental insights into the hierarchical assembly of nanoparticles. However, it is still challenging to control the assembly of individual nanoclusters at a molecular or atomic level. Herein, we report the dimeric assembly of Au25(PET)18 (PET=2‐phenylethanethiol), where two Au25(PET)18 monomers are bridged together by two Ag atoms to form the Ag2Au50(PET)36 dimer. The Ag2Au50(PET)36 dimer is a unique mesomer, which has not been found in any other chiral metal nanoclusters. Furthermore, the Ag2Au50(PET)36 dimer is distinct from the Au25(PET)18 monomer in its optical, electronic, and catalytic properties. This study is expected to provide a feasible strategy to precisely modulate the assembly of metal nanoclusters with controllable structures and properties.  相似文献   

15.
We report two synthetic routes for concurrent formation of phenylmethanethiolate (‐SCH2Ph)‐protected Au20(SR)16 and Au24(SR)24 nanoclusters in one‐pot by kinetic control. Unlike the previously reported methods for thiolate‐protected gold nanoclusters, which typically involve rapid reduction of the gold precursor by excess NaBH4 and subsequent size focusing into atomically monodisperse clusters of a specific size, the present work reveals some insight into the kinetic control in gold–thiolate cluster synthesis. We demonstrate that the synthesis of ‐SCH2Ph‐protected Au20 and Au24 nanoclusters can be obtained through two different, kinetically controlled methods. Specifically, route 1 employs slow addition of a relatively large amount of NaBH4 under slow stirring of the reaction mixture, while route 2 employs rapid addition of a small amount of NaBH4 under rapid stirring of the reaction mixture. At first glance, these two methods apparently possess quite different reaction kinetics, but interestingly they give rise to exactly the same product (i.e., the coproduction of Au20(SCH2Ph)16 and Au24(SCH2Ph)20 clusters). Our results explicitly demonstrate the complex interplay between the kinetic factors that include the addition speed and amount of NaBH4 solution as well as the stirring speed of the reaction mixture. Such insight is important for devising synthetic routes for different sized nanoclusters. We also compared the photoluminescence and electrochemical properties of PhCH2S‐protected Au20 and Au24 nanoclusters with the PhC2H4S‐protected counterparts. A surprising 2.5 times photoluminescence enhancement was observed for the PhCH2S‐capped nanoclusters when compared to the PhC2H4S‐capped analogues, thereby indicating a drastic effect of the ligand that is merely one carbon shorter.  相似文献   

16.
New approaches to electrospray ionization mass spectrometry (ESI-MS)-with exact compositional assignments-of small (Au25) nanoparticles with uniform and mixed protecting organothiolate monolayers are described. The results expand the scope of analysis and reveal a rich chemistry of ionization behavior. ESI-MS of solutions of phenylethanethiolate monolayer-protected gold clusters (MPCs), Au25(SC2Ph)18, containing alkali metal acetate salts (MOAc) produce spectra in which, for Na+, K+, Rb+, and Cs+ acetates, the dominant species are MAu25(SC2Ph)182+ and M2Au25(SC2Ph)182+. Li+ acetates caused ligand loss. This method was extended to the analysis of Au25 MPCs with mixed monolayers, where thiophenolate (-SPh), hexanethiolate (-SC6), or biotinylated (-S-PEG-biotin) ligands had been introduced by ligand exchange. In negative-mode ESI-MS, no added reagents were needed in order to observe Au25(SC2Ph)18- and to analyze mixed monolayer Au25 MPCs prepared by ligand exchange with 4-mercaptobenzoic acid, HSPhCOOH, which gave spectra through deprotonation of the carboxylic acids. Adducts of tetraoctylammonium (Oct4N+) with -SPhCOO- sites were also observed. Mass spectrometry is the only method that has demonstrated capacity for measuring the exact distribution of ligand-exchange products. The possible origins of the different Au25 core charges (1-, 0, 1+, 2+) observed during electrospray ionization are discussed.  相似文献   

17.
我们在此报道了一种未曾发现的有趣现象:尽管[Au23(SC6H11)16]、Au24(SC2H4Ph)20 (Ph:苯环)、Au36(TBBT)28 (TBBTH:对叔丁基苯硫酚)、Au38(SC2H4Ph)24、混合Aux(SC2H4Ph)y团簇及3 nm的金纳米粒子有不同的组成、结构、尺寸和保护性硫醇配体,但它们在三苯基膦(PPh3)作用下,均能统一地经由亚稳的[Au11(PPh3)8Cl2]2+最终转化为稳定的双二十面体[Au25(PPh3)10(SR)5Cl2]2+ (SR:硫醇配体)。换句话说,三苯基膦是这些硫醇保护的纳米粒子的统一转化器。然而,聚乙烯吡咯烷酮(PVP)/柠檬酸盐(Citrate)保护的金纳米粒子和[Ag25(SPhMe2)18] (Me:甲基)在同样的条件下,却不能转化为[Au25(PPh3)10(SR)5Cl2]2+或[Ag25(PPh3)10(SR)5Cl2]2+,暗示了硫醇保护的金纳米粒子具有与三苯基膦反应的独特性能。另外,我们考察了配体对双二十面体[Au25(PPh3)10(SR)5Cl2]2+团簇荧光性能的影响。  相似文献   

18.
Synthesis of atom‐precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]? cluster (SR: thiolate) using a pure [Ag25(SR)18]? cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25?xAux(SR)18]?, x=1–8. Mass spectrometry and crystallography of [Ag24Au(SR)18]? reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single‐atom level.  相似文献   

19.
A modification of Au25(pMBA)18 that incorporates one diglyme ligand as a direct synthetic product is reported. Notably the expected statistical production of clusters containing other ligand stoichiometries is not observed. This Au25(pMBA)17diglyme product is characterized by electrospray ionization mass spectrometry (ESI-MS) and optical spectroscopy. Thiolate for thiolate ligand exchange proceeds on this cluster, whereas thiolate for diglyme ligand exchange does not.  相似文献   

20.
We report the controlled growth of Au25(SR)18 and Au38 (SR)24 (where R = CH2CH2Ph) nanoclusters of molecular purity via size-focusing from the same crude product that contains a distribution of nanoclusters. In this method, gold salt was first mixed with tetraoctylammonium bromide (TOAB), and then reacted with excess thiol to form Au(I)-SR polymers in THF (as opposed to toluene in previous work), followed by NaBH 4 reduction. The resultant crude product contains polydisperse nanoclusters and was then used as the common starting material for controlled growth of Au25(SR)18 and Au38(SR)24 , respectively. In Route I, Au25(SR)18 nanoclusters of molecular purify were produced from the crude product after 6 h aging at room temperature. In Route II, the crude product was isolated and further subjected to thermal thiol etching in a toluene solution containing excess thiol, and one obtained pure Au38(SR)24 nanoclusters, instead of Au25(SR)18 . This work not only provides a robust and simple method to prepare both Au25(SR)18 and Au38(SR)24 nanoclusters, but also reveals that these two nanoclusters require different environments for the size-focusing growth process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号