首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴宝嘉  韩永昊  彭刚  金逢锡  顾广瑞  高春晓 《物理学报》2011,60(12):127203-127203
利用有限元分析方法,研究了金刚石对顶砧中电极与样品接触点位置变化对范德堡法测量样品电阻率精度的影响.结果表明:当电极中心与样品边缘的间距b≤d/9(d为样品直径)时能得到精确的电阻率测量结果;当电极位置远离样品边缘而逐渐接近样品中心时,其位置变化对电阻率测量精度的影响迅速增大;相同的电极位置变化对具有较大电阻率的半导体样品电阻率测量精度的影响更明显. 关键词: 电阻率 有限元方法 金刚石对顶砧  相似文献   

2.
A rotational diamond anvil cell is the most suitable deformation apparatus with which to investigate the rheological properties of deep-Earth materials at pressures similar to those found in the lower mantle and core. However, slip between the sample and piston is still a problem, since the slip prevents the attainment of a constant strain rate and interferes with the uniform deformation of a sample. In this paper, we report that using a diamond anvil with deep grooves results in a marked improvement in the coupling between the sample and the diamond anvils.  相似文献   

3.
Caihong Jia 《中国物理 B》2022,31(4):40701-040701
Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures. However, it is an enormous challenge to characterize the thermal and physical properties of materials using the diamond anvil cell (DAC) platform. In the present study, a steady-state method is used with a DAC and a combination of thermocouple temperature measurement and numerical analysis is performed to calculate the thermal conductivity of the material. To this end, temperature distributions in the DAC under high pressure are analyzed. We propose a three-dimensional radiative-conductive coupled heat transfer model to simulate the temperature field in the main components of the DAC and calculate in situ thermal conductivity under high-temperature and high-pressure conditions. The proposed model is based on the finite volume method. The obtained results show that heat radiation has a great impact on the temperature field of the DAC, so that ignoring the radiation effect leads to large errors in calculating the heat transport properties of materials. Furthermore, the feasibility of studying the thermal conductivity of different materials is discussed through a numerical model combined with locally measured temperature in the DAC. This article is expected to become a reference for accurate measurement of in situ thermal conductivity in DACs at high-temperature and high-pressure conditions.  相似文献   

4.
Developments in continuous and pulsed laser‐heating techniques, and finite‐element calculations for diamond anvil cell experiments are reported. The methods involve the use of time‐resolved (5 ns gated) incandescent light temperature measurements to determine the time dependence of heat fluxes, while near‐IR incandescent light temperature measurements allow temperature measurements to as low as 500 K. Further optimization of timing in pulsed laser heating together with sample engineering will provide additional improvements in data collection in very high PT experiments.  相似文献   

5.
By application of large plastic shear on a lead sample in a rotational diamond anvil cell, we studied the pressure self-multiplication and the stress deviation phenomena, along with the consequential effects on a phase transformation of lead. It is indicated that pressure can be promoted by the gradual addition of shear. The stress deviation in the sample along different Chi angles is minimal and within the systematic error range. It is thus specified that a quasi-hydrostatic condition is generated in the sample chamber. Moreover surprisingly, under such shear-controlled pressure elevation, the lead fcc-to-hcp phase transformation pressure is found to initiate and complete, respectively, at 12.8 and 18.5?GPa, which is identical to those observed in hydrostatic compressions. The phenomena of the so-launched quasi-hydrostatic pressure, the self-multiplication, along with the consequential effects on the phase transformation properties by shear at pressures are expected to lead to further understanding of materials as well as to potential new technologies at extremes.  相似文献   

6.
ABSTRACT

Data-driven exploration for pressure-induced superconductors was performed based on the high-throughput first-principles screening of electronic band structures. In the screening conditions, we focused on the characteristics including a narrow band gap, flat band feature, and possibility of metallization under high pressure. The 27 promising compounds were screened out from the database of Atomwork for the candidates of new pressure-induced superconductors. Among the candidates, we actually synthesized three compounds in a single crystal, and all candidates exhibited the pressure-induced superconductivity. For the in-situ electrical transport measurements, we developed a novel configuration of diamond anvil cell with boron-doped diamond electrodes and an undoped diamond insulating layer. The discovered new pressure-induced superconductors via the data-driven approach and the developed diamond anvil cell were summarized in this paper.  相似文献   

7.
丁琨  窦秀明  孙宝权 《物理》2019,48(7):451-455
金刚石对顶砧加压装置广泛用于物理、化学、材料等许多科学领域。自Bridgman发明金属对顶砧及随后发展金刚石对顶砧以来,对顶砧装置设计和加压技术得到不断发展。文章介绍采用压电驱动金刚石对顶砧来产生高压,实现低温20 K下原位连续加压,连续加压范围约2—4 GPa。该加压装置具有体积小、操作方便,可装在小型低温恒温器中使用等优点。  相似文献   

8.
杨留响 《中国物理 B》2016,25(7):76201-076201
Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now,large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.  相似文献   

9.
Abstract

A new diamond anvil cell has been developed to study the phase behavior of fluid mixtures at high temperature. Special care has been taken to achieve good temperature stability and small temperature gradients. Preliminar experiments show that the cell performs well.  相似文献   

10.
A kinetic study of phase transformation of n-octane has been performed using a hydrothermal diamond anvil cell. The results show that pressure has a negative effect on the solid–liquid reaction rate. The increase of pressure can accelerate the liquid–solid transformation rate. Upon the liquid–solid transformation, the light transmittance showed a decreased trend with time in the early stage, which was caused by the formation of a large quantity of crystal nuclei. In the later stage, the light transmittance almost remained the same, thus indicating a growth stage of crystal nuclei. The activation volume yields a value of 2.16×10?5 and –1.35×10?5 m3/mol for the solid–liquid and liquid–solid transformations. Based on the obtained activation energy, the solid–liquid transformation is dominated by the interfacial reaction and diffusion, and the liquid–solid transformation is controlled by diffusion. This technique is an effective and powerful tool for the transformation kinetics study of n-octane.  相似文献   

11.
Three-dimensional X-ray diffraction can be used for characterizing the orientation, position, and strain tensor of single grains in a polycrystalline aggregate. Here, we show how the method is well suited for diamond anvil cell data with heterogeneous grain sizes, with an application to two samples of stishovite at 15 and 26 GPa. For each grain, we obtain a well-defined orientation matrix and cell parameters. Center of mass position can also be adjusted to the experimental data, with errors in the present experiment. Finally, strain tensors are adjusted for the individual grains. The stress distribution obtained is in agreement with expectations from the diamond anvil cell geometry and previous measurements of stishovite strength. Advantages and potential for improvement of the method are then discussed.  相似文献   

12.
Results of steady-state heat transfer experiments on iron in laser-heated diamond anvil cell, combined with numerical simulation using finite-element method are reported. Thermal boundary conditions, dimensions of sample assemblage, heating-laser beam characteristics and relevant optical properties have been well defined in the course of experiments. The thermal conductivity of the polycrystalline hexagonal-iron foil has been determined up to pressure 70 GPa and temperature 2000 K. At these conditions, the conductivity value of 32±7 W/m K was found. Sources of errors arising from uncertainties in input parameters and applied experimental procedures are discussed. Considering results of earlier preferred-orientation studies in diamond anvil cell, an averaging effect of polycrystalline texture on the intrinsic anisotropy is assumed. The obtained conductivity is interpreted as an effective value, falling in between the upper and lower bounds on the average conductivity of a random aggregate of uniaxial crystals.  相似文献   

13.
丁琨  武雪飞  窦秀明  孙宝权 《物理学报》2016,65(3):37701-037701
采用电驱动压电陶瓷取代传统机械螺丝给金刚石对顶砧施加压力,设计制备了低温下可连续增加流体静压的金刚石对顶砧压力装置,实现了低温(19±1)K连续加压达到4.41 GPa.该装置具有电驱动方便灵活、调谐精度高的低温连续加压功能.利用该装置实现了InAs单量子点发光与微腔腔模的共振耦合调谐过程.该装置将在原位压力精确调谐及测量样品信号跟踪等实验得到应用.  相似文献   

14.
Ge–Sn compound is predicted to be a direct band gap semiconductor with a tunable band gap. However, the bulk synthesis of this material by conventional methods at ambient pressure is unsuccessful due to the poor solubility of Sn in Ge. We report the successful synthesis of Ge–Sn in a laser-heated diamond anvil cell (LHDAC) at ~7.6 GPa &; ~2000 K. In situ Raman spectroscopy of the sample showed, apart from the characteristic Raman modes of Ge TO (Г) and β-Sn TO (Г), two additional Raman modes at ~225 cm?1 (named Ge–Sn1) and ~133 cm?1 (named Ge–Sn2). When the sample was quenched, the Ge–Sn1 mode remained stable at ~215 cm?1, whereas the Ge–Sn2 mode had diminished in intensity. Comparing the Ge–Sn Raman mode at ~225 cm?1 with the one observed in thin film studies, we interpret that the observed phonon mode may be formed due to Sn-rich Ge–Sn system. The additional Raman mode seen at ~133 cm?1 suggested the formation of low symmetry phase under high P–T conditions. The results are compared with Ge–Si binary system.  相似文献   

15.
Xia Zhao 《中国物理 B》2022,31(9):96201-096201
The phase transitions among the high-pressure polymorphic forms of CaCO3 (cc-I, cc-II, cc-III, and cc-IIIb) are investigated by dynamic diamond anvil cell (dDAC) and in situ Raman spectroscopy. Experiments are carried out at room temperature and high pressures up to 12.8 GPa with the pressurizing rate varying from 0.006 GPa/s to 0.056 GPa/s. In situ observation shows that with the increase of pressure, calcite transforms from cc-I to cc-II at ~ 1.5 GPa and from cc-II to cc-III at ~ 2.5 GPa, and transitions are independent of the pressurizing rate. Further, as the pressure continues to increase, the cc-IIIb begins to appear and coexists with cc-III within a pressure range that is inversely proportional to the pressurizing rate. At the pressurizing rates of 0.006, 0.012, 0.021, and 0.056 GPa/s, the coexistence pressure ranges of cc-III and cc-IIIb are 2.8 GPa-9.8 GPa, 3.1 GPa-6.9 GPa, 2.7 GPa-6.0 GPa, and 2.8 GPa-4.5 GPa, respectively. The dependence of the coexistence on the pressurizing rate may result from the influence of pressurizing rate on the activation process of transition by reducing the energy barrier. The higher the pressurizing rate, the lower the energy barrier is, and the easier it is to pull the system out of the coexistence state. The results of this in situ study provide new insights into the understanding of the phase transition of calcite.  相似文献   

16.
Abstract

Constructions of a cryogenic diamond anvil system with mechanical clamping press and helium pressure medium for microscopic optical studies are described. Low temperature nonmagnetic cells ø40 and ø20 mm have been developed. GaP samples doped with S, Te and isoelectronic impurities N, NN have been investigated up to 20 GPa at 1.5-300K.  相似文献   

17.
ABSTRACT

Thermal conductivities of planetary materials under extreme conditions are important input parameters for modeling planetary dynamics such as accretion, geodynamo and magnetic field evolution, plate tectonics, volcanism-related processes etc. However, direct experimental measurements of thermal conductivity at extreme conditions remain challenging and controversial. Here we propose a new technique of thermal conductivity measurement in laser-heated diamond anvil cell (LH-DAC) based on radial temperature distribution around laser focal spot, mapped by imaging tandem acousto-optical tunable filter (TAOTF). The new technique provides much more information about heat fluxes in the laser-heated sample than existing static heating setups, and does not require dynamic numerical modeling using heat capacities in contrast to dynamic pulsed heating setups. In the test experiment, thermal conductivity of γ-Fe at conditions relevant to cores of terrestrial planets was measured.  相似文献   

18.
王江华  贺端威 《物理学报》2008,57(6):3397-3401
金刚石压砧的几何结构使得在高压下封垫内的样品通常处于单轴应力场中:压砧轴向加载应力最大,径向应力最小.由于金刚石压砧内非静水压单轴应力场的影响,用传统的高压原位X射线衍射方法测得的物质压缩曲线一般位于理想静水压压缩曲线之上.利用金刚石压砧径向X射线衍射技术以及晶格应变理论,结合最近的钨、金刚石和硼六氧样品的高压原位同步辐射径向X射线衍射实验结果,从宏观差应力、样品强度、标压物质和待测物质强度的关系三个方面分析讨论了金刚石压砧内单轴应力场对物质状态方程测量的影响及解决方案. 关键词: 金刚石压砧 单轴应力场 高压原位X射线衍射 状态方程  相似文献   

19.
ABSTRACT

A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated in the case of elemental tantalum. Preliminary results of a comparison between reflective and refractive optics for high temperature measurements in the laser-heated diamond anvil cell are briefly discussed. Finally, the importance of the size and relative alignment of X-ray and laser beams for quantitative X-ray measurements is presented.  相似文献   

20.
The formation conditions of cubic spinel-structured gallium oxonitride have been investigated in situ under high-pressure/high-temperature conditions using a laser-heated diamond anvil cell. As starting materials, a mixture of the end members w-GaN/β-Ga2O3 in a molar ratio of 3:2 and a gallium oxonitride ceramic derived during pyrolysis from the metallo-organic precursor (Ga(OtBu)2NMe2)2 were used. In the mixture of the end members, spinel-structured gallium oxonitride starts crystallizing at a pressure of 3 GPa and at a temperature of about 1300 °C. The precursor-derived ceramic with predefined bondings reacted completely to the spinel phase, without by-products, at a pressure of 0.7 GPa. For the spinel-structured gallium oxonitride we determined a bulk modulus K of 216(7) GPa using a fixed value of 4 for K′. The spinel-structured gallium oxonitride exhibits a cell volume of 552.9(5) Å3 at ambient pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号