共查询到20条相似文献,搜索用时 46 毫秒
1.
Auer B Fernandez LE Hammes-Schiffer S 《Journal of the American Chemical Society》2011,133(21):8282-8292
The coupling of long-range electron transfer to proton transport over multiple sites plays a vital role in many biological and chemical processes. Recently the concerted proton-coupled electron transfer (PCET) reaction in a molecule with a hydrogen-bond relay inserted between the proton donor and acceptor sites was studied electrochemically. The standard rate constants and kinetic isotope effects (KIEs) were measured experimentally for this double proton transfer system and a related single proton transfer system. In the present paper, these systems are studied theoretically using vibronically nonadiabatic rate constant expressions for electrochemical PCET. Application of this approach to proton relays requires the calculation of multidimensional proton vibrational wave functions and the incorporation of multiple proton donor-acceptor motions. The decrease in proton donor-acceptor distances due to thermal fluctuations and the contributions from excited electron-proton vibronic states play important roles in these systems. The calculated KIEs and the ratio of the standard rate constants for the single and double proton transfer systems are in agreement with the experimental data. The calculations indicate that the standard PCET rate constant is lower for the double proton transfer system because of the smaller overlap integral between the ground state reduced and oxidized proton vibrational wave functions, resulting in greater contributions from excited electron-proton vibronic states with higher free energy barriers. The theory predicts that this rate constant may be increased by modifying the molecule in a manner that decreases the equilibrium proton donor-acceptor distances or alters the molecular thermal motions to facilitate the concurrent decrease of these distances. These insights may guide the design of more efficient catalysts for energy conversion devices. 相似文献
2.
3.
Sarauli D Meier R Liu GF Ivanović-Burmazović I van Eldik R 《Inorganic chemistry》2005,44(21):7624-7633
For the first time, the effect of pressure on proton-coupled electron-transfer reactions of two selected seven-coordinate FeIII/II(H2L)(H2O)2 systems [where H2L = 2,6-diacetylpyridine-bis(semicarbazone) and 2,6-diacetylpyridine-bis(semioxamazide), respectively] was examined. The acid-base equilibria of the different Fe(III/II) systems were investigated by spectrophotometric, potentiometric, and electrochemical titrations. On the basis of the obtained species distributions, the pH intervals in which the different protonated forms of the two studied systems exist were defined. In different pH ranges, a different number of protons (from 0 to 3 protons per electron) can be transferred during the redox process, which affects the change in the overall charge on the complexes. For all the different protonation forms of the studied complexes, the change in the redox potentials with pressure was measured and the redox reaction volume was obtained by high-pressure cyclic voltammetry. The results show that in the case of proton-coupled electron transfer, the reaction volume for the neutralization of protons contributes to the overall reaction volume. A linear correlation between Deltaz2 (change in the square of the charge) and the overall reaction volume of the complexes upon reduction, DeltaVcomplex0, was found. The average value of the intrinsic volume change for the selected seven-coordinate iron complexes was estimated from the intercept of the plot of DeltaVcomplex0 versus Deltaz2 to be 9.2 +/- 0.7 cm3 mol(-1). For the combined redox and protonation processes, the data are discussed in terms of linear correlations between Deltaz2 and the redox and neutralization reaction volumes reported in the literature. 相似文献
4.
A theoretical investigation of proton-coupled electron transfer in ruthenium polypyridyl complexes is presented. The three reactions studied are as follows: (1) the comproportionation reaction of [(bpy)(2)(py)Ru(IV)O](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(bpy)(2)(py)Ru(III)OH](2+); (2) the comproportionation reaction of [(tpy)(bpy)Ru(IV)O](2+) and [(tpy)(bpy)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(III)OH](2+); and (3) the cross reaction of [(tpy)(bpy)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(II)OH(2)](2+) to produce [(tpy)(bpy)Ru(II)OH(2)](2+) and [(bpy)(2)(py)Ru(III)OH](2+). This investigation is motivated by experimental measurements of rates and kinetic isotope effects for these systems (Binstead, R. A.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 3287. Farrer, B. T.; Thorp, H. H. Inorg. Chem. 1999, 38, 2497.). These experiments indicate that the second reaction is nearly one order of magnitude faster than the first reaction, and the third reaction is in the intermediate regime. The experimentally measured kinetic isotope effects for these three reactions are 16.1, 11.4, and 5.8, respectively. The theoretical calculations elucidate the physical basis for the experimentally observed trends in rates and kinetic isotope effects, as well as for the unusually high magnitude of the kinetic isotope effects. In this empirical model, the proton donor-acceptor distance is predicted to be largest for the first reaction and smallest for the third reaction. This prediction is consistent with the degree of steric crowding near the oxygen proton acceptor for the three reactions. The second reaction is faster than the first reaction since a smaller proton donor-acceptor distance leads to a larger overlap between the reactant and product proton vibrational wave functions. The intermediate rate of the third reaction is determined by a balance among several competing factors. The observed trend in the kinetic isotope effects arises from the higher ratio of the hydrogen to deuterium vibrational wave function overlap for larger proton donor-acceptor distances. Thus, the kinetic isotope effect increases for larger proton donor-acceptor distances. The unusually high magnitude of the kinetic isotope effects is due in part to the close proximity of the proton transfer interface to the electron donor and acceptor. This proximity results in strong electrostatic interactions that lead to a relatively small overlap between the reactant and product vibrational wave functions. 相似文献
5.
This paper presents a general theoretical formulation for proton-coupled electron transfer (PCET) reactions. The solute is represented by a multistate valence bond model, and the active electrons and transferring proton(s) are treated quantum mechanically. This formulation enables the classical or quantum mechanical treatment of the proton donor-acceptor vibrational mode, as well as the dynamical treatment of the proton donor-acceptor mode and the solvent. Nonadiabatic rate expressions are presented for PCET reactions in a number of well-defined limits for both dielectric continuum and molecular representations of the environment. The dynamical rate expressions account for correlations between the fluctuations of the proton donor-acceptor distance and the nonadiabatic PCET coupling. The quantities in the rate expressions can be calculated with a dielectric continuum model or a molecular dynamics simulation of the full system. The significance of the quantum and dynamical effects of the proton donor-acceptor mode is illustrated with applications to model PCET systems. 相似文献
6.
Rosenthal J Hodgkiss JM Young ER Nocera DG 《Journal of the American Chemical Society》2006,128(32):10474-10483
A homologous set of porphyrin derivatives possessing an isocyclic five-membered ring appended with an amidinium functionality has been used to examine proton-coupled electron transfer (PCET) through well-characterized amidine-carboxylic acid interfaces. Conjugation between the porphyrin chromophore and the amidinium interface can be altered by selective reduction of the isocyclic ring of an amidinium-purpurin to produce an amidinium-chlorin. The highly conjugated amidinium-purpurin displays large spectral shifts in the visible region upon alteration of the amidinium/amidine protonation state; no such change is observed for the chlorin homologue. Analysis of the UV-vis absorption and emission profiles of the amidinium-purpurin upon deprotonation allows for the measurement of the porphyrinic-amidinium acidity constant for the ground state (pKa = 9.55 +/- 0.1 in CH3CN) and excited state (pKa)= 10.40 +/- 0.1 in CH3CN). The absorption spectrum of the purpurin also provides a convenient handle for determining the protonation state of assembled interfaces. In this way, the purpurin macrocycle provides a general tool for PCET studies because it can be used to determine the location of a proton within PCET interfaces formed from carboxylic acid electron acceptors including dinitrobenzenes (DNBs) and naphthalenediimide (NI), which have been used extensively in previous PCET studies. An amidine-carboxylic acid interface is observed for electron-rich acceptors, whereas the ionized amidinium-carboxylate interface is observed for electron-poor acceptors. The PCET kinetics for purpurin/chlorin associated to NI are consistent with an amidine-carboxylic acid interface, which is also verified spectrally. 相似文献
7.
8.
Motivated by the experiments of Hodgkiss et al. [J. Phys. Chem. (submitted)] on electron transfer (ET) through a H-bonding interface, we present a new theoretical model for proton-coupled electron transfer (PCET) in the condensed phase, that does not involve real proton transfer. These experiments, which directly probe the joint T-isotope effects in coupled charge transfer reactions, show anomalous T dependence in k(H)k(D), where k(H) and k(D) are the ET rates through the H-bonding interface with H-bonded protons and deuterons, respectively. We address the anomalous T dependence of the k(H)k(D) in our model by attributing the modulation of the electron tunneling dynamics to bath-induced fluctuations in the proton coordinate, so that the mechanism for coupled charge transfer might be better termed vibrationally assisted ET rather than PCET. We argue that such a mechanism may be relevant to understanding traditional PCET processes, i.e., those in which protons undergo a transfer from donor to acceptor during the course of ET, provided there is an appropriate time scale separating both coupled charge transfers. Likewise, it may also be useful in understanding long-range ET in proteins, where tunneling pathways between redox cofactors often pass through H-bonded amino acid residues, or other systems with sufficiently decoupled proton and electron donating functionalities. 相似文献
9.
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(?) + TyrOH → TyrOH + TyrO(?), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Br?nsted slope of ?. In contrast, for water-mediated PCET, we observe integer Br?nsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Br?nsted analysis. 相似文献
10.
A systematic investigation in isolated 5-hydroxyisoxazole–water complexes (5-HIO · (H2O)nn = 1–3) is performed at the DFT level, employing B3LYP/6-31G(d, p) basis set. Single-point energy calculations are also performed at the MP2 level using B3LYP/6-31G(d, p) optimized geometries and the 6-311++G(d, p) basis set. The computational results show that the keto tautomer K2 is the most stable isomer in the gas phase, and the tautomer K1 to be the next most stable tautomer. Hydrogen bonding between HIO and the water molecule(s) will dramatically lower the barrier by a concerted multiple proton transfer mechanism. The proton transfer process of 3WEcis ↔ 3WK1 and 2WEtrans ↔ 2WK2 is found to be more efficient in two tautomerization, and the barrier heights are 7.03 and 14.15 kcal/mol at B3LYP/6-31G(d, p) level, respectively. However, the proton transfer reaction between Ecis and K1 cannot happen without solvent-assisted. 相似文献
11.
The use of light to drive proton-coupled electron transfer (PCET) reactions has received growing interest, with recent focus on the direct use of excited states in PCET reactions (ES-PCET). Electrostatic ion pairs provide a scaffold to reduce reaction orders and have facilitated many discoveries in electron-transfer chemistry. Their use, however, has not translated to PCET. Herein, we show that ion pairs, formed solely through electrostatic interactions, provide a general, facile means to study an ES-PCET mechanism. These ion pairs formed readily between salicylate anions and tetracationic ruthenium complexes in acetonitrile solution. Upon light excitation, quenching of the ruthenium excited state occurred through ES-PCET oxidation of salicylate within the ion pair. Transient absorption spectroscopy identified the reduced ruthenium complex and oxidized salicylate radical as the primary photoproducts of this reaction. The reduced reaction order due to ion pairing allowed the first-order PCET rate constants to be directly measured through nanosecond photoluminescence spectroscopy. These PCET rate constants saturated at larger driving forces consistent with approaching the Marcus barrierless region. Surprisingly, a proton-transfer tautomer of salicylate, with the proton localized on the carboxylate functional group, was present in acetonitrile. A pre-equilibrium model based on this tautomerization provided non-adiabatic electron-transfer rate constants that were well described by Marcus theory. Electrostatic ion pairs were critical to our ability to investigate this PCET mechanism without the need to covalently link the donor and acceptor or introduce specific hydrogen bonding sites that could compete in alternate PCET pathways.Electrostatic ion pairs provide a general method to study excited-state proton-coupled electron transfer. A PTaETb mechanism is identified for the ES-PCET oxidation of salicylate within photoexcited cationic ruthenium–salicylate ion pairs. 相似文献
12.
Park J Morimoto Y Lee YM Nam W Fukuzumi S 《Journal of the American Chemical Society》2012,134(8):3903-3911
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET. 相似文献
13.
14.
15.
In this work, the authors use complete active space self-consistent field method to investigate the photoinduced charge-separated states and the electron transfer transition in complexes ethylene-tetracyanoethylene and tetramethylethylene-tetracyanoethylene. Geometries of isolated tetracyanoethylene, ethylene, and tetramethylethylene have been optimized. The ground state and the low-lying excited states of ethylene and tetracyanoethylene have been optimized. The state energies in the gas phase have been obtained and compared with the experimentally observed values. The torsion barrier of tetracyanoethylene has been investigated through the state energy calculation at different conformations. Attention has been particularly paid to the charge-separated states and the electron transfer transition of complexes. The stacked conformations of the donor-acceptor complexes have been chosen for the optimization of the ground and low-lying excited states. Equilibrium solvation has been considered by means of conductor-like screening model both in water and in dichloromethane. It has been found that the donor and tetracyanoethylene remain neutral in complexes in ground state (1)A(1) and in lowest triplet state (3)B(1), but charge separation appears in excited singlet state (1)B(1). Through the correction of nonequilibrium solvation energy based on the spherical cavity approximation, pi-->pi* electron transfer transition energies have been obtained. Compared with the experimental measurements in dichloromethane, the theoretical results in the same solvent are found higher by about 0.5 eV. 相似文献
16.
In solution, the self-exchange reactions for oxygen-centered pi-radicals, e.g., PhO. + PhOH <==>PhOH + PhO., are known to occur with low activation enthalpies (E(a) approximately equal to 2 kcal/mol). For the PhO./PhOH couple and, we conclude, for other O-centered pi-radicals, exchange occurs by proton-coupled electron transfer (PCET) with the proton transferred between oxygen electron pairs while the electron migrates between oxygen orbitals orthogonal to the -O- - -H- - -O- transition state plane (Mayer et al. J. Am. Chem. Soc. 2002, 123, 11142). Iminoxyls, R(2)C=NO., are sigma-radicals with substantial spin density on the nitrogen. The R(2)C=NO./R(2)C=NOH self-exchange has a significant E(a) (Mendenhall et al. J. Am. Chem. Soc. 1973, 95, 627). For this exchange, DFT calculations have revealed a counterintuitive cisoid transition state in which the seven atoms, >C=NO- - -H- - -ON=C<, lie in a plane (R = H, Me) or, for steric reasons, two planes twisted at 45.2 degrees (R = Me(3)C). The planar transition state has the two N-O dipoles close to each other and pointing in the same direction and an O- - -H- - -O angle of 165.4 degrees . A transoid transition state for R = H lies 3.4 kcal/mol higher in energy than the cisoid despite a more favorable arrangement of the dipoles and a near linear O- - -H- - -O. It is concluded that iminoxyl/oxime self-exchange reactions occur by a five-center, cyclic PCET mechanism with the proton being transferred between electron pairs on the oxygens and the electron migrating between in-plane orbitals on the two nitrogens (R(N-N) = 2.65 A). The calculated E(a) values (8.8-9.9 kcal/mol) are in satisfactory agreement with the limited experimental data. 相似文献
17.
Ishikita H Soudackov AV Hammes-Schiffer S 《Journal of the American Chemical Society》2007,129(36):11146-11152
The mechanism for tyrosyl radical generation in the [Re(P-Y)(phen)(CO)3]PF6 complex is investigated with a multistate continuum theory for proton-coupled electron transfer (PCET) reactions. Both water and the phosphate buffer are considered as potential proton acceptors. The calculations indicate that the model in which the proton acceptor is the phosphate buffer species HPO(4)2- can successfully reproduce the experimentally observed pH dependence of the overall rate and H/D kinetic isotope effect, whereas the model in which the proton acceptor is water is not physically reasonable for this system. The phosphate buffer species HPO4(2-) is favored over water as the proton acceptor in part because the proton donor-acceptor distance is approximately 0.2 A smaller for the phosphate acceptor due to its negative charge. The physical quantities impacting the overall rate constant, including the reorganization energies, reaction free energies, activation free energies, and vibronic couplings for the various pairs of reactant/product vibronic states, are analyzed for both hydrogen and deuterium transfer. The dominant contribution to the rate arises from nonadiabatic transitions between the ground reactant vibronic state and the third product vibronic state for hydrogen transfer and the fourth product vibronic state for deuterium transfer. These contributions dominate over contributions from lower product states because of the larger vibronic coupling, which arises from the greater overlap between the reactant and product vibrational wave functions. These calculations provide insight into the fundamental mechanism of tyrosyl radical generation, which plays an important role in a wide range of biologically important processes. 相似文献
18.
Recently,muchattentionhasbeenpaidto4,9dihydroxy3,10perylenequinonoidphotosensitizers(PQP)[1].Theypossesslotsofexcellentproperties,suchaseasilybeingpurified,largeconcentrationtolerance,highquantumyieldof1O2,highthermalstability,etc.Inaddition,theyshowtheabilityo… 相似文献
19.
20.
正Phosphorus-containing organic compounds are important feedstock for the synthesis of value-added bioactive molecules. Therefore, the development of highly efficient synthetic methods for the construction of phosphorus-element bonds has drawn huge attention in the past decades [1].Particularly, the formation of P–C bonds from phosphoruscentered radicals has been demonstrated to be one of the most efficient and convenient strategies, which has been widely applied for the synthesis of organic phosphorus compounds in recent years. 相似文献