首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlocal decoherence of two qubits due to pure phase damping has been investigated. We have proposed a scheme to keep the entanglement of two qubits from nonlocal decoherence. By applying a series of ±π pulses, nonlocal decoherence can be thoroughly suppressed.  相似文献   

2.
Considering the dipole-dipole coupling intensity between two atoms and the field in the Fock state, the entanglement dynamics between two atoms that are initially entangled in the system of two two-level atoms coupled to a single mode cavity in the presence of phase decoherence has been investigated. The two-atom entanglement appears with periodicity without considering phase decoherence, however, the phase decoherence causes the decay of entanglement between two atoms, with the increasing of the phase decoherence coefficient, the entanglement will quickly become a constant value, which is affected by the two-atom initial state. Meanwhile the two-atom quantum state will forever stay in the maximal entangled state when the initial state is proper even in the presence of phase decoherence. On the other hand, the Bell violation and the entanglement do not satisfy the monotonous relation, a large Bell violation implies the presence of a large amount of entanglement under certain conditions, while a large Bell violation corresponds to a little amount of entanglement in certain situations. However, the violation of Bell-CHSH inequality can reach the maximal value if two atoms are in the maximal entangled state, or vice versa.  相似文献   

3.
应用全量子理论研究了存在相位退相干时单模相干光场与一个二能级原子相互作用系统纠缠的时间演化规律;分别讨论了原子—光场耦合常数、光场的平均光子数以及失谐量的大小对场与原子纠缠的影响.结果表明:随着原子—光场耦合常数的增大和光场平均光子数的增加,系统纠缠的振荡频率都会明显增大.不存在相位退相干时,纠缠的时间演化明显受到失谐量的影响,若选取适当的失谐量,系统的纠缠可长时间保持在最大纠缠态.若考虑相位退相干的影响,则在共振情况下系统纠缠的时间演化是一个逐渐衰减的过程,且最终衰减到零;但若存在适当的失谐量,则在初始一段时间内系统的纠缠也是一个波动幅度逐渐衰减的过程,但随着时间的演化,失谐量抵消了相位退相干的影响,使系统的纠缠不再衰减到零.如果增大失谐量,纠缠在初始一段时间内波动的幅度会相应的减小,并且纠缠趋于稳定的时间也随着失谐量的增大而缩短;当失谐量适当时,系统可保持在纠缠相对较大的状态而无消纠缠态.  相似文献   

4.
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.  相似文献   

5.
Protection of entanglement from disturbance of the environment is an essential task marion processing. We examine the validity and limitation of the weak measurement and reversal in quantum infor- (WMR) operation in the protection of distributed entanglement from various decoherence sources. Since the entanglement variation can be investigated analytically for an arbitrarily entangled bipartite pure state under three kinds of typical noisy quantum channels, we show explicitly that the WMR operation indeed helps for protecting distributed entanglement from ampli- tude damping and phase damping, but not for depolarizing. Bxperimental feasibility for testing our results is discussed using current laboratory techniques.  相似文献   

6.
石甲栋  吴韬  宋学科  叶柳 《中国物理 B》2014,23(2):20310-020310
In this paper,we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment,and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames.Through the calculations and analyses,it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel,while the system is under the phase damping and flip channels.This protection protocol cannot prevent entanglement but will accelerate the death of entanglement.In addition,if the system is in the noninertial reference frame,then the effect of weak measurement will be weakened for the amplitude damping channel.Nevertheless,for other decoherence channels,the Unruh effect does not affect the quantum weak measurement,the only exception is that the maximum value of entanglement is reduced to√2/2of the original value in the inertial frames.  相似文献   

7.
马小三  王安民 《物理学报》2008,57(4):2026-2030
利用负性纠缠度(negativity)研究了两个三能级原子系统在费米环境中的纠缠演化问题-结果表明,两个三能级原子系统的纠缠演化不仅依赖于系统和环境的相互作用强度,而且还依赖于系统所处的具体量子态-通过例子发现,系统和环境相互作用强度越大,纠缠衰减越快;对于纯态,仅当时间趋于无穷时纠缠才被完全破坏;对于混态,则在有限的时间内纠缠即被彻底破坏-通过一般的分析找到了一类免退相干的量子子空间-在这些子空间中,量子态不受环境的影响,故其纠缠不变-研究有助于理解费米环境造成的退相干对玻色系统纠缠的影响- 关键词: 费米环境 纠缠演化 两个三能级原子  相似文献   

8.
两个V型三能级原子系统的纠缠突然死亡与复苏   总被引:1,自引:0,他引:1       下载免费PDF全文
魏巧  鄢嫣  李高翔 《物理学报》2010,59(7):4453-4459
研究了在真空辐射场作用下,两个V型三能级原子系统的纠缠随时间的演化特性.发现当两原子间距较远,自发辐射会导致纠缠退化,甚至导致纠缠突然死亡,而原子激发态衰变的速率会影响纠缠死亡的时间;当两原子间距非常小,由于原子间的合作效应,死亡后的纠缠会在一段时间后复苏,初始的纠缠和复苏的纠缠由不同的原因引起.  相似文献   

9.
We analyze the time evolution of entanglement of two-qutrit system within the framework of Milburn's model of intrinsic decoherence. The entanglement evolution relies not only on the parameters of system, but also on the concrete states either pure or mixed. The linear entropy used to measure the extent to which the intrinsic decoherence affects quantum states is evaluated.  相似文献   

10.
姜春蕾  刘晓娟  刘明伟  王艳辉  彭朝晖 《物理学报》2012,61(17):170302-170302
通过求解系统的Milburn方程,研究了内禀退相干下两比特海森伯XY模型中的热纠缠性质. 讨论了非均匀磁场、系统初始纠缠度、 两比特的相对相位对系统热纠缠的调控作用.结果表明:在系统一定的初始条件下, 磁场的引入能够大大提高两比特间的热纠缠 程度;在固有退相干存在的情况下,系统热纠缠强烈依赖于两个自旋比特的初始态, 通过控制两自旋比特的相对相位和振幅,可以 获得系统的稳定热纠缠.结果还表明:在没有外界磁场时,发现Bell正交态是系统的"暗态", 它的热纠缠度在演化过程中不受系 统内禀退相干的影响.  相似文献   

11.
By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environmenton the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially.  相似文献   

12.
Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.  相似文献   

13.
郭金良  夏岩  宋鹤山 《中国物理 B》2010,19(1):10310-010310
Based on the concept of concurrence, we have investigated the entanglement dynamics of two two-level atoms coupled to a single-mode cavity field with inhomogeneous couplings. We find that, for some initial states, the inhomogeneous couplings not only induce but also enhance the entanglement in the process of its evolution. In addition, considering the intrinsic decoherence proposed by Milburn, we also find that a proper value of inhomogeneous couplings can enhance the stationary entanglement, and as a result, the destructive effect of intrinsic decoherence on entanglement can be moderated by the inhomogeneous couplings.  相似文献   

14.
The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.  相似文献   

15.
In this paper,we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition.From our analysis,we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment.Specially,our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly.Additionally,the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

16.
Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.  相似文献   

17.
In this paper, we have investigated the quantum entanglement of quantum states undergoing decoherence from a spin environment which drives a quantum phase transition. From our analysis, we find that the entanglement dynamics depends not only on the coupling strength but also on the external magnetic field and the number of the freedom degrees of the environment. Specially, our results imply that the decay of the entanglement can be enhanced by the quantum phase transition of the environment when the system is coupled to the environment weakly. Additionally, the discussion of the case of the multipartite states with high dimensions is made.  相似文献   

18.
By considering the intrinsic decoherence effect, we investigate the entropy exchange and entanglement in the interacting system of a superconducting charge qubit coupled to a single-mode optical cavity. We found that although the intrinsic decoherence leads to an irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator, and has an apparently influence on the partial entropies of the two-component subsystems, it dose not destroy entropy exchange behavior. In addition, the lower bound of the concurrence, as the measure of entanglement of the coupling system, is calculated. It is shown that the evolution of entanglement is sensitive to the change of the intrinsic decoherence.  相似文献   

19.
We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.  相似文献   

20.
Finding the most robust entangled states during the whole process of decoherence is a particularly fundamental problem for quantum physics and quantum information processing. In this paper, the decoherence process of two-qubit system under two individual identical decoherence channels is investigated systematically. We find that although the robustness of two-qubit states with same initial entanglement is usually different, the Bell-like states are always the most robust entangled states during decoherence. That is to say, affected by the same amount of noise, the remain entanglement of an arbitrary two-qubit state is not more than that of a Bell-like state with the same initial entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号