首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonstationary and stationary cosmological models with rotation and the Bianchi IX metric are constructed within the general relativity theory. A comoving anisotropic liquid and non-comoving “dust-like liquid” are the sources of gravitation in one case, while a comoving anisotropic, non-comoving “dust-like liquid”, and pure radiation - in the other. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 33–37, August, 2008.  相似文献   

2.
3.
4.
The validity of imposing spatial homogeneity on the variations in the usual action principle for Einstein's equations is studied. It is proved that with this procedure the standard and ADM Lagrangians give correct Einstein equations if and only if the space belongs to Class A of Ellis and MacCallum [1], i.e., the structure constants of the simply transitive group satisfy C fg f =0. The possibility of overcoming this difficulty in the Class B spaces is examined.This work was supported in part by the United States Atomic Energy Commission under Contract Number AT 104-37-39 Project Agreement No. 125.  相似文献   

5.
Recently Berman and Gomide have presented cosmological models with a constant deceleration parameter in general relativity without assuming a specific equation of state. It is shown that these models are equivalent to those with bulk viscosity. Some general remarks are made on the former models, including implications for violations of causality.  相似文献   

6.
The importance of cosmological constant for the cosmological models is given. The variations of the cosmological model for parameters λ and k were discussed respectively. Near λ = 0, the cosmological model is unstable with the change of λ, and near λ = β = 0, the cosmological model is unstable with the change of k. So when we consider the stable cosmological model, we must consider the nonzero cosmological constant.  相似文献   

7.
It is shown that the cosmological relativity theory predicts the value = 1.934 × 10–35s–2 for the cosmological constant. This value of is in excellent agreement with the measurements recently obtained by the High-Z Supernova Team and the Supernova Cosmology Project.  相似文献   

8.
A new one-dimensional transport code named TASK/TX, which is able to describe dynamic behavior of tokamak plasmas, has been developed. It solves simultaneously a set of flux-surface averaged equations composed of Maxwell’s equations, continuity equations, equations of motion, heat transport equations, fast-particle slowing-down equations and two-group neutral diffusion equations. The set of equations describes plasma rotations in both toroidal and poloidal directions through momentum transfer and evaluates the radial electric field self-consistently. The finite element method with a piecewise linear interpolation function is employed with a fine radial mesh near the plasma surface. The Streamline Upwind Petrov–Galerkin method is also used for robust calculation. We have confirmed that the neoclassical properties are well described by the poloidal neoclassical viscous force. The modification of density profile during neutral beam injection is presented. In the presence of ion orbit loss, the generation of the inward radial electric field and torque due to radial current is self-consistently calculated.  相似文献   

9.
10.
The effect of toroidal rotation on the geodesic acoustic mode (GAM) in a tokamak is studied. It is shown that, in addition to a small frequency upshift of the ordinary GAM, another GAM, with much lower frequency, is induced by the rotation. The new GAM appears as a consequence of the nonuniform plasma density and pressure created by the centrifugal force on the magnetic surfaces. Both GAMs in a rotating plasma are shown to exist both as continuum modes with finite mode numbers m and n at the rational surfaces q=m/n as well as in the form of axisymmetric modes with m=n=0.  相似文献   

11.
We present a summary of the results, in the large scale, that were derived from the gauge-invariant (GI) cosmological density perturbation analysis. Comparisons are made with the synchronous gauge (SG) results, pointing out past incorrect analyses concerning evolution during the inflationary era and the decaying mode during the matter dominated era. The GI method, using the covariant equations, is recommended for cosmological perturbation analysis, not only because of its gauge-independence, but because of its simplicity and similarity to the Newtonian analysis. Solutions in other specific gauges can simply be recovered from the known results of the GI analysis.  相似文献   

12.
Values of the normalized plasma pressure up to twice the free-boundary stability limit predicted by ideal magnetohydrodynamic (MHD) theory have been sustained in the DIII-D tokamak. Long-wavelength modes are stabilized by the resistive wall and rapid plasma toroidal rotation. High rotation speed is maintained by minimization of nonaxisymmetric magnetic fields, overcoming a long-standing impediment [E. J. Strait, Phys. Rev. Lett. 74, 2483 (1995)]]. The ideal-MHD pressure limit calculated with an ideal wall is observed as the operational limit to the normalized plasma pressure.  相似文献   

13.
14.
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode.  相似文献   

15.
Using cosmological relativity theory, we derive the formula for the cosmological redshift written explicitly in terms of 1 – , where = /c is the ratio of the average mass density to the critical closure density. Based on the present day data of observed redshifts, we conclude that < 1, which means the universe is infinite and curved, and expands forever.  相似文献   

16.
Both holographic interferometry and speckle interferometry are used to analyse small rotation. The experimental set-up and results are presented. A brief comparison of the two methods is also given.  相似文献   

17.
Recent DIII-D experiments with reduced neutral beam torque and minimum nonaxisymmetric perturbations of the magnetic field show a significant reduction of the toroidal plasma rotation required for the stabilization of the resistive-wall mode (RWM) below the threshold values observed in experiments that apply nonaxisymmetric magnetic fields to slow the plasma rotation. A toroidal rotation frequency of less than 10 krad/s at the q=2 surface (measured with charge exchange recombination spectroscopy using C VI) corresponding to 0.3% of the inverse of the toroidal Alfvén time is sufficient to sustain the plasma pressure above the ideal MHD no-wall stability limit. The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping.  相似文献   

18.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响。结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小。此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略。  相似文献   

19.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响.结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小.此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号