首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the wellknown EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application. The project sponsored by the Foundation for Doctorate Thesis of Tsinghua University, and the National Key Project in 1999–2004 sponsored by the Ministry of Science and Technology of China  相似文献   

2.
A second-order semi-empirical two-dimensional model of turbulence in the approximation of the far turbulent wake is considered. The sought quantities are the velocity defect, kinetic turbulent energy, energy dissipation, and Reynolds stress. The full group of transformations admitted by this model is found. Self-similar solutions satisfying natural boundary conditions are constructed. The solutions obtained agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 74–78, March–April, 2008.  相似文献   

3.
In this work we examine first the flow field of a confined jet produced by a turbulent flow in a long cylindrical pipe issuing in an abrupt angle diffuser. Second, we examine the dispersion of inertial micro-particles entrained by the turbulent flow. Specifically, we examine how the particle dispersion field evolves in the multiscale flow generated by the interactions between the large-scale structures, which are geometry dependent, with the smaller turbulent scales issued by the pipe which are advected downstream. We use Large-Eddy-Simulation (LES) for the flow field and Lagrangian tracking for particle dispersion. The complex shape of the domain is modelled using the immersed-boundaries method. Fully developed turbulence inlet conditions are derived from an independent LES of a spatially periodic cylindrical pipe flow. The flow field is analyzed in terms of local velocity signals to determine spatial coherence and decay rate of the coherent K–H vortices and to make quantitative comparisons with experimental data on free jets. Particle dispersion is analyzed in terms of statistical quantities and also with reference to the dynamics of the coherent structures. Results show that the particle dynamics is initially dominated by the Kelvin–Helmholtz (K–H) rolls which form at the expansion and only eventually by the advected smaller turbulence scales.  相似文献   

4.
Numerical simulation of axisymmetric turbulent jets   总被引:1,自引:0,他引:1  
The flow in axisymmetric turbulent jets is numerically simulated with the use of a semi-empirical second-order turbulence model including differential transport equations for the normal Reynolds stresses. Calculated results are demonstrated to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 55–60, September–October, 2008.  相似文献   

5.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

6.
The development of the turbulent axisymmetric wake of a self-propelled body is modeled experimentally and numerically. Experimentally, the self-propulsion regime was implemented in the wake of a body of revolution whose hydrodynamic resistance was completely compensated by the pulse of a swirling jet rejected from its trailing part, and the jet-induced swirling was counterbalanced by the rotation of a part of the body surface in the opposite direction. The second-order semiempirical turbulence model that includes the differential equation of motion. the transfer of the normal Reynolds stresses, and the dissipation rate was used to describe this wake mathematically, and the nonequilibrium algebraic relations were used to determine the tangential stresses. A satisfactory agreement between the calculation results and the experimental data is shown. Degeneration of the distant turbulent wake is investigated numerically. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 4, pp. 49–58, July–August, 2000.  相似文献   

7.
Using the standard kε turbulence model, a two-dimensional turbulent pipe flow was simulated with and without square cavities. Effect of cavity aspect ratio on flow and heat transfer characteristics was investigated. Uncertainty was approximated through experimental validation and grid independence. The simulation revealed circulation inside the cavities. Cavity boundaries were shown to contribute significantly toward turbulence production. Cavity presence was shown to enhance overall heat transfer through the wall, while increasing pressure drop significantly across the pipe. It was predicted that cavities with higher aspect ratio enhance heat transfer more while increasing pressure drop.  相似文献   

8.
Through an improved ε transport equation, a major quality enhancement of the cubic k–ε model, earlier developed in[13], is obtained. The ε-equation of [13],yielding good results for wall-bounded and rotating flows, is combined with the one derived by Shih et al. [20], which produces good results for free shear flows (e.g. the plane jet–round jet anomaly is resolved).Results are presented for the following flows: fully developed stationary and rotating channel and pipe, backward-facing step, sudden pipe expansion, smooth channel expansion and contraction, plane and round jet. Heat transfer predictions in turbulent impinging jets are also discussed. Accurate results are obtained for the mean flow quantities for all test cases, without case dependent model tuning. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The paper deals with fully developed steady turbulent flow of slurry in a circular straight and smooth pipe. The Kaolin slurry consists of very fine solid particles, so the solid particles concentration, and density, and viscosity are assumed to be constant across the pipe. The mathematical model is based on the time averaged momentum equation. The problem of closure was solved by the Launder and Sharma k-ε turbulence model (Launder and Sharma, Lett Heat Mass Transf 1:131–138, 1974) but with a different turbulence damping function. The turbulence damping function, used in the mathematical model in the present paper, is that proposed by Bartosik (1997). The mathematical model uses the apparent viscosity concept and the apparent viscosity was calculated using two- and three-parameter rheological models, namely Bingham and Herschel–Bulkley. The main aim of the paper is to compare measurements and predictions of the frictional head loss and velocity distribution, taking into account two- and three-parameter rheological models, namely Bingham and Herschel–Bulkley, if the Kaolin slurry possesses low, moderate, and high yield stress. Predictions compared with measurements show an observable advantage of the Herschel–Bulkley rheological model over the Bingham model particularly if the bulk velocity decreases.  相似文献   

10.
The results of experimental and numerical studies of the dynamics of the parameters of uniform turbulence of a stably stratified fluid for different molecular Prandtl-Schmidt numbers over a wide range of buoyancy times Nτ are given. The tank, the measurement apparatus used, and the experimental procedure are briefly described. The numerical modeling used a second-order model of uniform turbulence of a stratified medium. The influence of fluctuations of the turbulent mass (heat) flux q(Nτ) on the evolution of the statistical parameters of the velocity and temperature fields is analyzed, and an invariant equation is found for the parameters of the strong turbulence of the stratified fluid. It is shown that the statistical parameters of the turbulence, being smoothed with respect to the amplitude of the fluctuations, vary self-similarly with time after the collapse point. Donetsk State University, Donetsk 340055.1Institute of Heat and Mas Transfer, National Academy of Sciences of Belarusia, Minsk 220072. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 64–75, July–August, 1998.  相似文献   

11.
Using a two-point probability density function for the particle distribution over velocities and coordinates, a closed model of the particle effect on the turbulent flow characteristics is formulated. The processes of turbulent dissipation and turbulent energy transfer across the spectrum are studied. Different models of two-phase turbulence are compared. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 40–56, July–August, 1998. The work received financial support from INTAS (grant No. 94-4348) and the Russian Foundation for Basic Research (project No. 98-01-00-353).  相似文献   

12.
The flow initiated by a hot gas cloud (thermal) in a stratified atmosphere is calculated on the basis of theκ-ε turbulence model and the transport model for the Reynolds stresses and turbulent fluxes and the results obtained are compared The nonlocal nature of the turbulent transport in a vortex ring and its effect on certain flow characteristics are explained In particular, the calculations carried out using the Reynolds stress model show much slower cooling of the temperature-vortex torus than those based calculated on theκ-ε-model Modification of theκ-ε-model to take the effect of curvature of the streamlines approximately into account makes it only partially possible to reproduce the results obtained on the basis of the Reynolds stress model Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 12–20, January–February, 1999. The research was carried out with support from the Russian Foundation for Basic Research (project No. 95-01-00544a).  相似文献   

13.
Buoyant flows often contain regions with unstable and stable thermal stratification from which counter gradient turbulent fluxes are resulting, e.g. fluxes of heat or of any turbulence quantity. Basing on investigations in meteorology an improvement in the standard gradient-diffusion model for turbulent diffusion of turbulent kinetic energy is discussed. The two closure terms of the turbulent diffusion, the velocity-fluctuation triple correlation and the velocity-pressure fluctuation correlation, are investigated based on Direct Numerical Simulation (DNS) data for an internally heated fluid layer and for Rayleigh–Bénard convection. As a result it is decided to extend the standard gradient-diffusion model for the turbulent energy diffusion by modeling its closure terms separately. Coupling of two models leads to an extended RANS model for the turbulent energy diffusion. The involved closure term, the turbulent diffusion of heat flux, is studied based on its transport equation. This results in a buoyancy-extended version of the Daly and Harlow model. The models for all closure terms and for the turbulent energy diffusion are validated with the help of DNS data for internally heated fluid layers with Prandtl number Pr = 7 and for Rayleigh–Bénard convection with Pr = 0.71. It is found that the buoyancy-extended diffusion model which involves also a transport equation for the variance of the vertical velocity fluctuation gives improved turbulent energy diffusion data for the combined case with local stable and unstable stratification and that it allows for the required counter gradient energy flux.  相似文献   

14.
A mathematical model for the propagation of nonlinear long waves is constructed with allowance for nonhydrostatic pressure distribution and the development of a surface boundary layer due to wave breaking. The problem of the structure of a bore in a homogeneous liquid is solved. In particular, the transition of a wave bore to a turbulent bore as its amplitude increases is described within a single model. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 56–68, March–April, 1999.  相似文献   

15.
In this paper we consider a fully developed turbulent flow in a round pipe with a small inner annulus. The diameter of the inner annulus is less than 10% of the diameter of the outer pipe. As a consequence, the surface area of the inner pipe compared to the outer pipe is small. The friction exerted by the wall on the flow is proportional to the surface area and the wall shear stress. Due to the small surface area of the inner annulus the additional stress on the flow due to the presence of the annulus may expected to be negligible. However, it will be shown that the inner annulus drastically changes the flow patterns and gives rise to unexpected scaling properties. In previous studies (Chung et al., Int J Heat Fluid Flow 23:426–440, 2002; Churchill and Chan, AIChE J 41:2513–2521, 1995) it was argued that radial position of the point of zero shear stress does not coincide with the radial location of the point of maximum axial velocity. In our direct numerical simulations we observe a coincidence of these points within the numerical accuracy of our model. It is shown that the velocity profile close to the inner annulus is logarithmic.  相似文献   

16.
A mathematical model and a method for calculating a gas-droplet turbulent jet with allowance for velocity nonequilibrium and virtual mass of the condensed phase during turbulent fluctuations and also heat and mass transfer within the three-temperature scheme are developed. Methodical calculations are performed. The results of these calculations are in reasonable agreement with available experimental data. The structure of the gas-droplet jet in a cocurrent high-velocity high-temperature gas flow is studied by numerical methods. The ratio of intensities of heat and mass transfer between the phases and turbulent diffusion transfers of substances is found to be different at the initial, transitional, and basic segments of the jet. This difference is responsible for the nonmonotonic axial distribution of vapor density and the lines of the halved mass flow of the condensed phase. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 85–94, May–June, 2008.  相似文献   

17.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

18.
An attempt to numerically model the specific characteristics of the distribution of small solid particles in a turbulent tube-jet flow is presented. The numerical results are compared with experimental data. Tallin. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 76–86, March–April, 1998. The theoretical part of the work was supported financially by the Government of Estonia and the International Science Foundation (grant LK 6100).  相似文献   

19.
The results of calculating the diffusion of a dispersed admixture in turbulent swirling jet flows using the model of momentum transfer in a turbulent gas—dispersion flow proposed by the authors are presented. These results are compared with experimental data and with calculations based on various mathematical models. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 71–78, January–February, 1994.  相似文献   

20.
The attenuation of turbulent pulsations in near-wall flows by means of spanwise periodic surface oscillation is examined. A direct numerical simulation of the flow in a circular pipe with imposed rotational oscillations has shown that for Re=4000 and the optimal oscillation frequency, the degree of turbulence attenuation increases with increase in the oscillation amplitude until the flow relaminarizes. The estimated optimal frequency ω+=0.06. The results of applying the theory of the development of near-wall coherent structures agree qualitatively with those of numerical simulation. It is concluded that the intensity of the pulsations is reduced because the spanwise movements weaken the longitudinal vortices which cause turbulent bursts in near-wall flows. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 37–44, March–April, 2000. The research was carried out with financial support from the Russian Foundation for Basic Research (project No. 99-01-01095).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号