首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual phenomenon was confirmed in the gelation of polymer solution when branched low molecular weight polyethylene (B‐LMWPE) and ultrahigh molecular weight polyethylene (UHMWPE) solutions were quenched at their gelation temperature. That is, polarized light scattering (Hv scattering) from B‐LMWPE gels containing 95% solvent yielded a four‐leaf clover type as like the scattering from a perfect spherulite under Hv scattering but the corresponding polarized optical microscopy (POM) showed dark image showing no spherulite with Maltese cross color indicating considerable orientation fluctuation between the optical axes with respect to the radial axis of the spherulite. Hv scattering from pristine UHMWPE gels containing more than 99% solvent had an X‐type pattern, which became clearer with time. The corresponding POM images change from being dark, indicating no superstructure, to being slightly brighter, indicating the presence of indistinct superstructures. To analyze this unusual phenomenon of Hv scattering from B‐LMWPE and UHMWPE gels, new models were proposed using a statistical approach and optically anisotropic elements in three‐dimensional space. The theoretical patterns were in agreement with observation. Thus, it came to a conclusion that Hv scattering from the gels is attributed to strong distance correlation between polar and rotational angles of two optically anisotropic elements in the polymer‐rich phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

2.
Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.  相似文献   

3.
Calorimetric data on the concentration dependences of the enthalpy of dilution of polymer solutions are analyzed. The profiles of concentration dependences strongly depend on the nature of intermolecular interactions in polymer solutions and gels and on the specific features of their structure, including phase and relaxation states. Therefore, the concentration dependence of the enthalpy of dilution is treated as a spectral curve containing information on the energy state of the polymer solution and gel as a function of concentration. Theoretical models are considered that allow estimation of quantitative contributions from paired intermolecular and electrostatic interactions in solutions and contributions provided by the metastable state of a glassy polymer and by the presence of crystalline ordering.  相似文献   

4.
CHCl3 solutions containing a few percent polyethylene oxide PEO (MW = 200 000) or the low-molecular model dioxane are stirred at 50°C during more than 100 h in the presence of small amounts of KCl. The specific conductance, the viscosity and the density of the solutions are measured at 25°C as a function of time. Both PEO and dioxane act as ligands improving the solubility of KCl. The relaxation times are of the order of several hours. After 40 h or more the viscosity of the solutions increases in a spectacular way. However, the most striking observation is that the specific conductance of the polymeric solutions at 25°C is systematically 5% higher than the value measured with the same sample at 45°C, just as for metals. The effect of the dilution of the primary stirred solutions either in the pure solvent or in the initial polymer solution is investigated. These results are discussed in terms of a three-step mechanism in the polymer systems: (1) Loading of the coils to polymeric cations with a full elementary charge, as a consequence of charge transfer interactions of the crown-ether type with numerous K+ ions penetrating into the coils; (2) Electron tunnelling conduction of the Hamill—Ceulemans type from one positive coil to the neighbouring one; (3) Alteration of the structure of the coils and of their hydrodynamic radius by the motions of K+ in the coils. These ‘brachiation’ motions by a hopping mechanism result from an increased mobility of the complexed K+ ions, which is also the origin of the Zundel effect. They do not directly contribute to the conductance but are responsible for the delayed increase of the viscosity.  相似文献   

5.
Summary The shear orientation of a micellar hexagonal liquid crystalline phase was investigated by small-angle neutron scattering. The hexagonal phase in the quiescent state showed a symmetrical scattering pattern typical of a polydomain structure. Enhanced scattering along the flow direction was observed during shear and the anisotropy of scattering intensity became stronger with increasing shear rate. The anisotropic scattering pattern corresponds to an orientation perpendicular to the flow direction and can be interpreted as a log-rolling state. The oriented sample did not relax after cessation of shear. The results from small-angle neutron scattering confirm data obtained previously from rheo-small angle light scattering measurements and are discussed in comparison to shear alignment of lyotropic liquid crystalline polymer solutions.  相似文献   

6.
The formation of associative networks in semidilute aqueous solutions of hydrophobically modified hydroxyethylcellulose (HM-HEC) is dependent on intermolecular hydrophobic interactions. Addition of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) monomers to the system provides decoupling of these associations via inclusion complex formation with the polymer hydrophobic tails. Results from viscosity, polymer NMR self-diffusion, and dynamic light scattering (DLS) measurements show that the hydrophobic interactions in HM-HEC solutions are effectively suppressed when the level of HP-beta-CD addition increases. Small-angle neutron scattering (SANS) results reveal that the large-scale association complexes in HM-HEC solutions are strongly diminished when the concentration of HP-beta-CD rises. The time correlation data obtained from the DLS experiments unveiled the existence of two relaxation modes: one single exponential at short times followed by a stretched exponential at longer times. The fast mode is always diffusive, whereas the slow mode exhibits progressively stronger wavevector dependence as the intensity of the hydrophobic interactions increases. This feature, as well as the accompanying drop of the stretched exponential beta as the HP-beta-CD concentration decreases, is attributed to enhanced hydrophobic interactions and can be well rationalized in the framework of the coupling model of Ngai.  相似文献   

7.
A comparative structural investigation of the characteristics of polymer liquid-crystalline solutions including Kevlar® (PPD-T)/sulfuric acid, poly(Cl-p-phenylene terephthalamide) (Cl-PPD-T)/sulfuric acid, poly(γ-benzyl-L-glutamate) (PγBLG)/dioxane, and hydroxypropyl cellulose (HPC)/water was undertaken. Experimental procedures included polarized light microscopy, light scattering, absorption spectra, and x-ray diffraction on solutions at various concentrations and temperatures. Both the two-phase region at the onset of liquid-crystal formation and the wholly anisotropic phase were investigated. Each solution exhibited distinctive characteristics. The PPD-T and Cl-PPD-T solutions were nematic, and the PγBLG and HPC solutions were cholesteric. In the two-phase region the PPD-T, Cl-PPD-T, and PγBLG (but apparently not the HPC) exhibited negatively birefringent spherulites and aggregates of spherulites. The HPC solutions only exhibited spherulitic structures in the single-phase anisotropic system. The structures and orientations in the anisotropic phase for the various polymer solutions is considered. The helicoidal structural characteristics of the PγBLG and HPC solutions are contrasted.  相似文献   

8.
This review summarizes published data concerning modern physicochemical methods used to study complexation processes of polymers in solutions. Some of them—dynamic light scattering, nanoparticle tracking analysis, transmission electron microscopy, cryotransmission electron microscopy, atomic force microscopy, small-angle neutron scattering, analytical-velocity sedimentation, and luminescence methods—make it possible to gain insight into the structure of polymer complexes, while the other methods, such as isothermal titration calorimetry and surface plasmon resonance, provide an opportunity to assess the intensity of specific interactions between complex components.  相似文献   

9.
A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.  相似文献   

10.
Small angle neutron scattering (SANS) measurements and osmotic swelling pressure measurements are reported for polyelectrolyte gels and solutions under nearly physiological conditions. A synthetic polymer (sodium-polyacrylate) and three biopolymers (DNA, hyaluronic acid, and polyaspartic acid) are studied. The neutron scattering response of these anionic polyelectrolytes is closely similar, indicating that at larger length scales the organization of the polymer molecules is not significantly affected by the fine details of the molecular architecture (e.g., size and chemical structure of the monomer unit, type of polymer backbone). The results suggest that specific interactions between the polyelectrolyte chains and the surrounding monovalent cations are negligible. It is found that the osmotic compression modulus of these biopolymer solutions determined from the analysis of the SANS response decreases with increasing chain persistence length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3679–3686, 2006  相似文献   

11.
用粘度法和光散射法研究了分别具有质子给体 (Protondonor)和质子受体 (Protonacceptor)官能团的丙烯酸酯共聚物在溶液中的相互作用 .从粘度增长因子和聚合物在溶液中理想增比粘度的关系基础上提出了一个新的相互作用参数ka,研究了质子给体聚合物和质子受体聚合物在甲苯中的特殊相互作用 ,讨论了丙烯酸酯含量和酯烷基长度对组分间相互作用的影响 .结果表明 ,组分间的特殊相互作用随着丙烯酸长碳链酯含量和酯烷基长度的增加而增强 .光散射的结果表明ka 能够用于表征共混体系中的特殊相互作用  相似文献   

12.
Pitzer's equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer's model (combining a long-range term, based on the Debye–Hückel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid–liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems.  相似文献   

13.
A lattice analog of density functional theory is used to explore the structural and thermodynamic properties of critical nuclei in mixtures of particles with attractive anisotropic interactions. Protein molecules are assumed to occupy the sites on a regular cubic lattice, with effective directional interactions that mimic hydrogen bonding and the solvation forces induced by water. Interaction parameters are chosen to qualitatively reproduce the phase behavior of protein solutions. Our model predicts that critical nuclei of the solidlike phase have nonspherical shapes, and that their specific geometry depends on the nature of the anisotropic interactions. Molecules tend to align in distinctive ways in the core and in the interfacial region of these critical clusters, and the width and structure of the interface are highly affected by the presence of a metastable fluid-fluid critical point. Close to the critical region, the height of the barrier to nucleation is strongly reduced; this effect is enhanced by increasing the anisotropy of the intermolecular interactions. Unlike systems with short-range isotropic interactions, nucleation in our model is initiated by highly ordered clusters in which the order-disorder transition is confined to the interfacial region.  相似文献   

14.
Specific interactions, for example hydrogen bonding, dominate in numerous industrially important polymeric systems, both polymer solutions and blends. Typical cases are water-soluble polymers including biopolymers of special interest to biotechnology (e.g. the system polyethyleneglycol/dextran/water). Furthermore, most polymer blends are non-compatible and the requirement for compatible polymer pairs is often the presence of hydrogen-bonding interactions (e.g. polyvinylchloride/chlorinated polyethylene). In this work we give at first a short, comparative evaluation of existing thermodynamic models suitable for polymeric systems that take into account, explicitly, specific interactions like HB. The range of application of the models in terms of phase equilibria and their specific characteristics (accuracy of calculation, degree of complexity) are discussed. Finally, vapor–liquid equilibria (VLE) calculations for a number of polymer+solvent systems (including five different polymers) with a novel and very promising model are presented. This model is in the form of an equation of state that is (in its general formulation) non-cubic with respect to volume and has separate terms for physical and chemical interactions. The model has recently been proposed and has already been successfully applied to non-polymeric hydrogen-bonding systems (alcohol/water/hydrocarbons). This is the first time that it is extended to polymer solutions.  相似文献   

15.
The effect of associative polymers on the structure and rheological behavior of colloidal suspensions is discussed. Adding associative polymer is known to increase the viscosity of the suspensions. At high shear rates the increase is close to what could be expected on the basis of the hydrodynamic effects of the added polymer. At low shear rates the viscosity increases much more. Small-angle light scattering (SALS) during flow is used here to investigate the underlying structural mechanisms. The SALS patterns indicate that the associative polymer changes the particulate structure: characteristic butterfly patterns appear even at relatively low particle volume fractions. They are not present in the suspensions without associative polymer. The patterns indicate that fluctuations in particle concentration are more pronounced in the flow direction than in the vorticity direction and that anisotropic particulate structures with an orientation along the vorticity direction develop. The evolution of their characteristic length scale during flow has been followed over time. Changing the hydrophilic part of the polymer from polyacrylamide to polyacrylic acid induces stronger associative interactions. In the suspensions this results in a reduction of the relative viscosity rather than an increase. The difference in degree of associativity between the polymers also has an effect on the SALS patterns in the suspensions both at rest and during flow. The rheology as well as the SALS suggest the presence of a strong polymer network in the second system. The competition between adsorption of the associative polymer on the particles with the intermolecular associations between the polymer chains seems to be responsible for the observed differences. Copyright 2000 Academic Press.  相似文献   

16.
We have studied the melting of polymeric amphiphilic micelles induced by small-molecule surfactant and explained the results by experimental determination of the interfacial tension between the core of the micelles and the surfactant solutions. Poly(n-butyl acrylate-b-acrylic acid) (PBA-b-PAA) amphiphilic diblock copolymers form kinetically frozen micelles in aqueous solutions. Strong interactions with surfactants, either neutral or anionic [C12E6, C6E4, sodium dodecyl sulfate (SDS)], were revealed by critical micelle concentration (cmc) shifts in specific electrode and surface tension measurements. Since both polymer and surfactant are either neutral or bear negative charges, the attractive interactions are not due to electrostatic interactions. Light scattering, neutron scattering, and capillary electrophoresis experiments showed important structural changes in mixed PBA-b-PAA/surfactant systems. Kinetically frozen micelles of PBA-b-PAA, that are hardly perturbed by concentration, ionization, ionic strength, and temperature stresses, can be disintegrated by addition of small-molecule surfactants. The interfacial energy of the PBA in surfactant solutions was measured by drop shape analysis with h-PBA homopolymer drops immersed in small-molecule surfactant solutions. The PBA/water interfacial energy gammaPBA/H2O of 20 mN/m induces a high energy cost for the extraction of unimers from micelles so that PBA-b-PAA micelles are kinetically frozen. Small-molecule surfactants can reduce the interfacial energy gammaPBA/solution to 5 mN/m. This induces a shift of the micelle-unimer equilibrium toward unimers and leads, in some cases, to the apparent disintegration of PBA-b-PAA micelles. Before total disintegration, polymer/surfactant mixtures are dispersions of polydisperse mixed micelles. Based on core interfacial energy arguments, the disintegration of kinetically frozen polymeric micelles was interpreted by gradual fractionation of objects (polydisperse dispersion mechanism), whereas the disintegration of polymeric micelles in a thermodynamically stable state was interpreted by an exchange between a population of large polymer-rich micelles and a population of small surfactant-rich micelles (bidisperse dispersion mechanism). Finally, in our system and other systems from the literature, interfacial energy arguments could explain why the disintegration of polymer micelles is either partial or total as a function of the surfactant type and concentration and the hydrophobic block molar mass of the polymer.  相似文献   

17.
The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.  相似文献   

18.
Polymer-like micelles are analogs to polymer solutions and provide an exciting class of materials for both applications and fundamental understanding of polyelectrolyte systems. Small angle neutron and X-ray scattering have been key to the characterization of these materials from the first observations of linear micelle growth. As new materials are developed, these techniques continue to be utilized and combined with other analytical tools to characterize the length and time scales of polymer-like micelle behavior. Recent reports on the use of small-angle scattering to characterize polymer-like and wormlike micelles are reviewed, with focus on new materials, improvements in analytical approaches and anisotropic structures.  相似文献   

19.
An expression based on the Fröhlich theorem is given for the anisotropic inertial solvation potential of solutions. The principle of the additivity of the anisotropic inertial solvation potentials of solution components is put forward and substantiated. A model thermodynamic function of the anisotropic inertial solvation potential of a binary solution is suggested. The effect of formation of 1:1 complexes and bimolecular associates on the anisotropic inertial solvation potential of a binary solution is analyzed. The composition dependences of the anisotropic inertial solvation potentials of binary solutions of nitrobenzene, acetonitrile, nitromethane, and tetrachloromethane in associated and nonassociated polar and nonpolar solvents and in water are determined. The dependences obtained are compared to the corresponding model functions. Changes in the contribution of specific intermolecular interactions to the anisotropic inertial term of the Helmholtz energy of solvation of binary solutions are revealed by this method. Previously unknown anisotropic inertial solvation potentials are obtained for associated and polar nonassociated liquids in relation to their content in hexane. Conclusions on the magnitude and character of changes in the microstructure of solutions are made. The transformation of the anisotropic inertial to isotropic noninertial term of the Helmholtz energy of solvation is noted by the example of a solution with the ethanol volume fraction in hexane of 0.13.  相似文献   

20.
Physical properties of poly(amic acid) (PAA) casting solutions in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) were characterized by viscometry and dynamic light scattering (DLS) and were related to the morphological properties of asymmetric membranes prepared from these solutions. At a fixed polymer concentration, the increase in viscosity of the PAA solutions with increasing LiCl content is mainly determined by the viscosity of the salt–solvent medium, implying that the LiCl–NMP interactions are stronger than those between LiCl and PAA. Because of the strong salt–solvent interactions, complexes between LiCl and NMP are formed. The complexes reduce the solvent power of NMP for PAA inducing polymer aggregation (clustering) and/or transient cross-links in the solutions. Dynamic light scattering results for salt-containing solutions at low PAA concentrations support the existence of these aggregations. Solutions without salt showed a single relaxation, but solutions with LiCl exhibit multiple relaxation modes; two diffusional modes of cooperative and aggregates, and one angle independent transient network mode. The polymer aggregates and transient cross-links form a gel-like structure in the casting solution film and hinder macrovoid formation during phase inversion, resulting in asymmetric membranes with a primarily sponge-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号