首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CsCl in nearly isodielectric aqueous mixtures with tetrahydrofuran, 1,2-dimethoxyethane and dioxane has been studied at temperatures between 0° and 35°C. The conductance data are analyzed for the limiting conductance 0 and the association constant K A by means of the Justice-Ebeling conductance equation. By application of the Bjerrum equation an apparent distance of closest approach á is evaluated. This parameter is generally close to the crystallographic radius, 35Å. The deviations are attributed to solvation effects and are interpreted in terms of the Friedman-Rasaiah-Gurney cosphere overlap model. The variations of the effect with temperature permits an evaluation of enthalpy and entropy solvation parameters.  相似文献   

2.
The influence of molecular flexibility on the properties of thin fluid films formed by linear chain molecules is studied by means of a singlet level of inhomogeneous integral equation theory. The considered m-mer chain molecules are formed through the polymerization of m hard-sphere beads with two sticky bonds randomly placed inside each bead core. Different molecular flexibility, from totally flexible up to almost completely rigid is reached by varying the interbead bonding length. The homogeneous properties of the same model that is necessary input to the singlet approach are extracted from the Wertheim’s theory of polymerization. The adsorption, local density distribution, disjoining pressure and solvation force of the chain molecule films confined by attractive and repulsive surfaces are analyzed. The obtained results indicate significant influence of the molecular flexibility on the film layering that is the origin of oscillations of solvation interaction arising between film surfaces. The oscillations of solvation pressure and force become more pronounced with restriction of molecular flexibility and with increase of bulk volume fraction of chain molecules. The decay of the oscillations across the film depends on the chain length and on the physical nature of the film surfaces, i.e. whether they are lyophilic or lyophobic. The partitioning of chain molecules from the bulk into the film strongly depends on the chain flexibility and this effect is more pronounced for the lyophilic surfaces.  相似文献   

3.
Summary The necessary information is given to calculate volume fractions in binary systems formed with water, acetonitrile and tetrahydrofuran, in the temperature range 20–50°C.Dedicated to Professor István Halász at the occasion of his 60th anniversary.  相似文献   

4.
The dispersion of silica fines in water-ethanol suspensions has been studied through the measurement of settling efficiency, wetting rate, zeta potential, and viscosity. The measurements were performed on two silica samples with mean volumetric diameters of 5.02 and 0.272 &mgr;m at different fractions of ethanol in water-ethanol suspensions. The results have demonstrated that the dispersion stability of the silica suspensions increased as the fraction of ethanol increased and reached to maximum at the fraction of 50%, followed by a decline. The stability was stronger in a pure ethanol suspension than in a pure water suspension. It was observed that the stability closely correlated with the lyophilicity of the particles, but was not predominated by the surface charge of the particles as predicted by the DLVO theory. Viscosity measurements have been used to estimate the solvation film thickness on silica particles immersed in water-ethanol suspensions, on the basis of Einstein's theory of the viscosity of dispersions. It was found that the solvation film thickness on silica fines in a water-ethanol (1 : 1) suspension is about double that in a pure water suspension and about 1.4-fold that in a pure ethanol suspension, respectively, which well explains the dispersion behaviors of the silica fines in the water-ethanol suspensions because a thicker solvation film will cause a stronger disjoining pressure to prevent the proximity of the particles. Copyright 2001 Academic Press.  相似文献   

5.
The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation. Dedicated to Prof. C N R Rao on his 60th birthday  相似文献   

6.
Summary It is well known that UV-absorbing substances can be transformed into fluorescent substances by irradiation with UV-light. This principle is used for HPLC by means of a post-column reactor. The factors influencing the performance of the reactor, such as contribution to peak broadening and optimization of the photochemical reaction, are discussed leading to a new and versatile design.Dedicated to Professor Dr. István Halász for his 60th birthday.  相似文献   

7.
A microscopic method to examine a nonequilibrium solvation effect is reported. The solution reaction is simplified as a barrier‐crossing reaction within a solution reaction surface that corresponds to a two‐dimensional space determined by solute and solvent reactive coordinates. For this simplification, the motions within the space spanned by nonreactive coordinates are frozen. We derive three rate constant expressions: (1) in the nonadiabatic solvation limit, (2) in the equilibrium solvation limit, and (3) of the transition‐state theory. This method was applied to the examination of the contact‐ion‐pair formation of t‐BuCl in four waters. We found that the nonadiabatic solvation picture overestimates the nonequilibrium solvation effect. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 791–796, 2000  相似文献   

8.
Summary Five common tricyclic antidepressants are separated on a silica column using an aqueous eluent. The tricyclics are concentrated from serum using an adsorption procedure on a solid phase Sep PakTM C18 cartridge. The method appears to be adequate for monitoring therapeutic levels of these drugs.Dedicated to Professor Dr. István Halász for his 60th birthday.  相似文献   

9.
The excitation energy of Brooker's merocyanine in water–methanol mixtures shows nonlinear behavior with respect to the mole fraction of methanol, and it was suggested that this behavior is related to preferential solvation by methanol. We investigated the origin of this behavior and its relation to preferential solvation using the three‐dimensional reference interaction site model self‐consistent field method and time‐dependent density functional theory. The calculated excitation energies were in good agreement with the experimental behavior. Analysis of the coordination numbers revealed preferential solvation by methanol. The free energy component analysis implied that solvent reorganization and solvation entropy drive the preferential solvation by methanol, while the direct solute–solvent interaction promotes solvation by water. The difference in the preferential solvation effect on the ground and excited states causes the nonlinear excitation energy shift. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
The classic solvent system can't sufficiently separate one-dimensional edge-sharing SnI2 crystals in solution, which severely restricts the fabrication of high-quality tin-based perovskite film. Herein, a strong Lewis base (hexamethylphosphoramide, HMPA) has been introduced to coordinate Sn2+ to modulate solvation behaviours on perovskite precursor and regulate crystallization kinetics. The large molecular volume of HMPA and stronger bind energy of SnI2 ⋅ 2HMPA (−0.595 eV vs −0.118 eV for SnI2 ⋅ 2DMSO) change the solvation structure of SnI2 from edge-sharing cluster to monodisperse adduct, which contributes to uniform nucleation sites and prolongs crystal growth process. Delightfully, a fully-covered perovskite film is formed on the large-area substrate and tin-based perovskite solar cells processed with HMPA exhibit an excellent efficiency of 13.46 %. This research provides novel insights and directions for the solution preparation of smooth and uniform large-area tin-based perovskite film.  相似文献   

11.
Summary A method for the gas chromatographic determination of traces of formaldehyde is described. The formaldehyde is detected by means of a modified FID which contains a microreactor inside the jet for the hydrogenation of formaldehyde to methane. Only a slight modification to an ordinary FID is needed with no additional gas tubes and no alteration to the existing detector heater. The additional dead volume and peak broadening is negligible. The system is calibrated by means of a gas generator. The described method is used for determining the content of formaldehyde in the exhaust gases of methanol-driven cars.Dedicated to Prof. Dr. István Halász on the occasion of his sixtieth birthday.  相似文献   

12.
13.
In this paper, we present the theory and implementation of a nonequilibrium solvation model for the symmetry-adapted cluster (SAC) and symmetry-adapted cluster-configuration interaction (SAC-CI) method in the polarizable continuum model. For nonequilibrium solvation, we adopted the Pekar partition scheme in which solvent charges are divided into dynamical and inertial components. With this nonequilibrium solvation scheme, a vertical transition from an initial state to a final state may be described as follows: the initial state is described by equilibrium solvation, while in the final state, the inertial component remains in the solvation for the initial state; the dynamical component will be calculated self-consistently for the final state. The present method was applied to the vertical photoemission and absorption of s-trans acrolein and methylenecyclopropene. The effect of nonequilibrium solvation was significant for a polar solvent.  相似文献   

14.
The dynamic solvent effect often arises in solution reactions, where coupling between chemical reaction and solvent fluctuation plays a decisive role in the reaction kinetics. In this study, the Z/E isomerization reaction of nitoroazobenzene and benzylideneanilines in the ground state was computationally studied by molecular dynamics simulations. The non-equilibrium solvation effect was analyzed using two approaches: (1) metadynamics Gibbs energy surface exploration and (2) solvation Gibbs energy evaluation using a frozen solvation droplet model. The solute–solvent coupling parameter (Ccoupled) was estimated by the ratio of the solvent fluctuation Gibbs energy over the corresponding isomerization activation Gibbs energy. The results were discussed in comparison with the ones estimated by means of the analytical models based on a reaction–diffusion equation with a sink term. The second approach using a frozen solvation droplet reached qualitative agreement with the analytical models, while the first metadynamics approach failed. This is because the second approach explicitly considers the non-equilibrium solvation in the droplet, which consists of a solute at the reactant geometry immersed in the pre-organized solvents fitted with the solute at the transition state geometry.  相似文献   

15.
The solvation force of a simple fluid confined between identical planar walls is studied in two model systems with short ranged fluid-fluid interactions and long-ranged wall-fluid potentials decaying as -Az(-p),z--> infinity, for various values of p. Results for the Ising spins system are obtained in two dimensions at vanishing bulk magnetic field h=0 by means of the density-matrix renormalization-group method; results for the truncated Lennard-Jones (LJ) fluid are obtained within the nonlocal density functional theory. At low temperatures the solvation force f(solv) for the Ising film is repulsive and decays for large wall separations L in the same fashion as the boundary field f(solv) approximately L(-p), whereas for temperatures larger than the bulk critical temperature f(solv) is attractive and the asymptotic decay is f(solv) approximately L(-(p+1)). For the LJ fluid system f(solv) is always repulsive away from the critical region and decays for large L with the the same power law as the wall-fluid potential. We discuss the influence of the critical Casimir effect and of capillary condensation on the behavior of the solvation force.  相似文献   

16.
In this study, conditions for the optimal separation by LC-UV and characterisation by LC-ES-MS of crude mixtures generated during SPPS of several peptide hormones are compiled. The linear solvation energy relationship (LSER) methodology has been used to predict the retention of the target peptides and their side products and then to develop a separation LC methodology with applicability on both the analytical and preparative scale. Identification of these side products by LC-ES-MS analysis has been made on the basis of their calculated molecular masses. This method may be regarded as a key tool for the optimisation of the synthetic procedures and for complying with regulatory agencies' requirements before commercialisation of a safe and effective peptide-based pharmaceutical drug.Awarded a prize as outstanding poster on the occasion of Jornadas de Análisis Instrumental (JAI), November 26 to 29, 2002, Barcelona, Spain  相似文献   

17.
The relationship between the protein conformation and the hydration effect is investigated for the equilibrium fluctuation of cytochrome c. To elucidate the hydration effect with explicit solvent, the solvation free energy of the protein immersed in water was calculated using the molecular dynamics simulation coupled with the method of energy representation. The variations of the protein intramolecular energy and the solvation free energy are found to compensate each other in the course of equilibrium structural fluctuation. The roles of the attractive and repulsive components in the protein-water interaction are further examined for the solvation free energy. The attractive component represented as the average sum of protein-water interaction energy is dominated by the electrostatic effect and is correlated to the solvation free energy through the linear-response-type relationship. No correlation with the (total) solvation free energy is seen, on the other hand, for the repulsive component expressed as the excluded-volume effect.  相似文献   

18.
19.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

20.
We used molecular dynamics (MD) simulations to investigate the structures and properties of Newton black films (NBF) for several surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and surfactin using film thicknesses up to 10 nm. By calculating the interface formation energy for various packing conditions on the surface pressure-area isotherm, we found that the most probable surface concentration is approximately 42 A(2)/molecule for SDS and C16TAB and approximately 170 A(2)/molecule for surfactin. We then used this most probable concentration of each surfactant to simulate NBF with various film thicknesses. From analyzing the disjoining pressure-film thickness isotherms with the density profiles and the solvation coordination number, we found that the increase of the disjoining pressure during the film thinning was coupled with the change in inner structure of the NBF (i.e., density profile and the solvation of ionic entities). In the range of film thicknesses less than approximately 30 A, the disjoining pressures for the SDS and C16TAB were found to be larger than that of the surfactin. We predicted the Gibbs elasticity (175 dyn/cm for surfactin; 109 dyn/cm for C16TAB; 38 dyn/cm for SDS) required to assess the stability of NBF against surface concentration fluctuations, and the shear modulus (6.5 GPa for the surfactin; 6.1 GPa for the C16TAB; 3.5 GPa for the SDS) and the yield stress (approximately 0.8 GPa for surfactin; approximately 0.8 GPa for C16TAB; approximately 0.4 GPa for the SDS) to assess the mechanical stability against the externally imposed mechanical perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号