首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach to isolating small aggregates of single-wall carbon nanohorns (SWNHs) is presented. SWNHs are ultrasonically treated in an aqueous solution of surfactant, resulting in dispersion of SWNH aggregates. Subsequent centrifuging enables the separation of small aggregates from larger aggregates or agglomerations and removal of graphitic particles (GG balls), the main impurity. The SWNHs obtained in this way were purified and formed small aggregates, thus exhibiting characteristics superior to those of SWNHs before treatment. We believe that the ability to isolate small SWNH aggregates in an aqueous solution should contribute to their application in the fields of biological sensing and drug delivery systems.  相似文献   

2.
3.
The objective of this review with 122 references is to provide structure and retention mechanisms of porous graphitic carbon by chromatographic analysis and computational chemical analysis of retention mechanisms. Synthesis methods of porous graphitic carbon are described. Applications for use as matrix for dynamic coating on porous graphitic carbon and direct separation of polar compounds on porous graphitic carbon demonstrated that the physical and chemical stability of graphitic carbons performed in both chromatography and extraction, especially for polar compounds, those are difficult on both silica-based and organic polymer-based packing materials. The disadvantage is difficult desorption of non-polar compounds adsorbed on the surface. The development of 3.5-microm particles improves the separation power of graphitic carbon columns with the high theoretical plate number.  相似文献   

4.
We report the first development of a novel, planar, microfluidic, graphitic carbon separations column utilizing an array of graphitic micropillars of diamond cross-section as the chromatographic stationary phase. 795 nm femtosecond laser ablation was employed to subtractively machine fluidic architectures and a micropillared array in a planar, graphitic substrate as a monolithic structure. A sample injector was integrated on-chip, together with fluid-flow distribution architectures to minimize band-broadening and ensure sample equi-distribution across the micro-pillared column width. The separations chip was interfaced directly to the ESI probe of a Thermofisher Surveyor mass spectrometer, enabling the detection of test-mixture analytes following their differential retention on the micro-pillared graphitic column, thus demonstrating the exciting potential of this novel separations format. Importantly, unlike porous, graphitic microspheres, the temperature and pressure resilience of the microfluidic device potentially enables use in subcritical H(2)O chromatography.  相似文献   

5.
A comprehensive summary toward the unique properties of the novel graphitic nanomaterial of metal graphitic nanocapsules (MGNs) and their applications in SERS biodetection and bioimaging were presented here.  相似文献   

6.
《中国化学快报》2019,30(9):1581-1592
The novel graphitic nanomaterial of metal graphitic nanocapsules (MGNs) with superior stability, unique optical properties and biocompatibility possess great potential in biomedical and bioanalytical applications. The graphitic shell can quench the background fluorescence interference from external environments via a fluorescence resonance energy transfer (FRET) process and even avoid unnecessary reactions catalyzed by inner metal core. The graphitic shell with several characteristic Raman bands itself can act as Raman signal probe or internal standard (IS), especially the 2D-band within the cellular Raman-silent region helps to reduce the interference signals from external conditions. The present context attempts to give a comprehensive overview about the preparation and unique properties of MGNs as well as their applications in SERS biodetection and bioimaging.  相似文献   

7.
We present a rational and simple methodology to fabricate highly conductive nitrogen-doped ordered mesoporous carbon with a graphitic wall structure by the simple adjustment of the carbonization temperature of mesoporous carbon nitride without the addition of any external nitrogen sources. By simply controlling the heat-treatment temperature, the structural order and intrinsic properties such as surface area, conductivity, and pore volume, and the nitrogen content of ordered graphitic mesoporous carbon can be controlled. Among the materials studied, the sample heat-treated at 1000 °C shows the highest conductivity, which is 32 times higher than that for the samples treated at 800 °C and retains the well-ordered mesoporous structure of the parent mesoporous carbon nitride and a reasonable amount of nitrogen in the graphitic framework. Since these materials exhibit high conductivity with the nitrogen atoms in the graphitic framework, we further demonstrate their use as a support for nanoparticle fabrication without the addition of any external stabilizing or size-controlling agent, as well as the anode electrode catalysts. Highly dispersed platinum nanoparticles with a size similar to that of the pore diameter of the support can be fabricated since the nitrogen atoms and the well-ordered porous structure in the mesoporous graphitic carbon framework act as a stabilizing and size-controlling agent, respectively. Furthermore the Pt-loaded, nitrogen-doped mesoporous graphitic carbon sample with a high conductivity shows much higher anodic electrocatalytic activity than the other materials used in the study.  相似文献   

8.
The interaction of water with hydrophobic surfaces is quite important in a variety of chemical and biochemical phenomena. The coexistence of water and oil can be realized by introduction of surfactants. In the case of water vapor adsorption on graphitic nanopores, plenty of water can be adsorbed in graphitic nanopores without surfactants, although the graphitic surface is not hydrophilic. Why are water molecules adsorbed in hydrophobic nanopores remarkably? This work can give an explicit insight to water adsorption in hydrophobic graphite nanopores using experimental and theoretical approaches. Water molecules are associated with each other to form the cluster of 1 nm in size, leading to a significant stabilization of the cluster in the graphitic nanopores. This mechanism can be widely applied to interfacial phenomena relating to coexistence of water and nanostructural materials of hydrophobicity.  相似文献   

9.
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.  相似文献   

10.
A highly oriented mesoporous graphitic carbon nanospring (OGCS) with graphitic layers that are perpendicular to the axis is prepared by hydrothermal treatment of epoxy resin at 500 °C and annealing at 1400 °C. Water plays an important role in not only forming the graphitic carbon nanospring with a high [002] orientation and a large amount of active edge‐plane sites, but also in the generation of the mesoporous structure, which facilitate fast K‐ion adsorption and diffusion. In situ and ex situ measurements confirm that OGCS undergoes K‐adsorption in mesopores and then K‐intercalation in the graphite layer to form KC8 with a low discharge voltage. The spring‐like nanostructure can expand one‐dimensionally along the axial direction to accommodate the volume variation. The OGCS electrode thus shows a much better K‐storage performance than that of unoriented graphitic carbon.  相似文献   

11.
多功能金属石墨纳米囊由于其良好的稳定性和独特的理化性质, 在生物医学领域受到了广泛关注. 利用石墨烯外壳独特的拉曼散射特征峰作为拉曼标签或者内标, 结合等离子体纳米核优异的表面增强拉曼散射(SERS)和双光子发光(TPL)性能, 可实现SERS生物分析以及肿瘤细胞或组织的Raman/TPL双模成像. 利用表面积大的石墨烯外壳作为药物负载平台, 结合等离子体纳米核的近红外光吸收能力, 可实现光介导的病原菌杀灭以及肿瘤细胞或实体瘤的热疗与化疗的协同治疗. 此外, 利用石墨烯外壳优异的荧光猝灭性能, 还实现了生物分子的荧光检测; 利用磁性纳米核独特的磁学性能, 可实现生物样品的分离和富集、 细菌的原位磁共振成像检测以及磁靶向胃部口服药物的递送. 本综述首先介绍了金属石墨纳米囊的制备、 分类和性质, 然后概述了它们在生物检测、 生物成像和治疗3个方面的应用进展, 并进一步总结了它们的发展现状包括生物毒性和生物医学应用的优缺点, 最后对其在生物医学领域的发展方向做出了展望. 我们期望多功能的金属石墨纳米囊能够为今后的临床生物医学应用提供可靠的纳米平台.  相似文献   

12.
Recently, structural manipulation of tetrahedral amorphous carbon (ta-C) film at the nanometer scale has attracted much attention. We demonstrate a novel method to obtain a nanocomposite film where nanoscale columns of graphitic phase are embedded in a tetrahedral amorphous carbon matrix. When using a Si substrate with nanosized Ni dots on the surface, graphitic columns grew selectively on the Ni dots, while a dense ta-C film was deposited on the bare Si surface. The growth of the graphitic columns is closely related to the nanosized Ni dots that catalyze the graphitic-carbon formation in a filtered vacuum arc deposition condition.  相似文献   

13.
Summary Polyunsaturated fatty acids have been analysed as methyl esters by liquid chromatography on porous graphitic carbon and the results compared with those obtained on octadecyl bonded phases. Chromatographic behaviour on octadecyl bonded phases arises principally as a result of hydrophobic interactions with the bonded phase. Because the retention of analytes is greater on porous graphitic carbon than on octadecyl phases, organic mobile phases are required. When the number of double bonds is low (ca 1–3), the behaviour of porous graphitic carbon is similar to that of octadecyl bonded phases, but when this number increases stronger interactions with the flat surface of the graphite appear, resulting in new selectivity. These two ‘reversed-phase’ systems are considered complementary for separation of different fatty acid methyl esters. An additional advantage of porous graphitic carbon is that it enables isolation of hexadecartrienoic and hexadecadienoic acids, which are not available commercially.  相似文献   

14.
In order to study the crazing behavior in rubber-toughened glassy polymers, polystyrene samples containing two rubber balls of the same diameter with varying separations have been prepared. They were subjected to simple tension, and their crazing behavior was observed. When the two balls are close together, the craze-initiation stress is considerably lower than that of single-ball samples. With increase in the distance between the two balls the craze-initiation stress increases at first almost linearly and levels off when l/d reaches about 1.45, where l and d are the center-to-center distance and the diameter of the balls, respectively. When l is sufficiently small, the crazes are seen to develop extensively at the inner surfaces of the balls and finally bridge with each other. The crazes bridged between the balls expand largely in the plane perpendicular to the applied load.  相似文献   

15.
A natural self-regeneration step for urea derived graphitic carbon nitride with platinum nanoparticles is found by simply opening the system to air in the dark under ambient conditions, following its solar-driven hydrogen production. The produced peroxides deactivate the graphitic carbon nitride. Release of weakly bound peroxides on the polymeric semiconductor surface is a crucial process for regeneration.  相似文献   

16.
A newly designed Gemini-shaped hexabenzocoronene amphiphile (1), carrying an isothiouronium ion-appended side chain, self-assembles in CH2Cl2 to form a nanotubular object, whose graphitic wall is densely covered by a positively charged molecular layer of isothiouronium ion pendants. The graphitic nanotube can be dispersed uniformly in aqueous media owing to effective hydration as well as electrostatic repulsion. Post-supramolecular functionalization of the nanotube surface is possible, without disruption of the tubular morphology, by taking advantage of a specific interaction of the isothiouronium ion pendants with oxoanion guests. Mixing with sodium poly(4-styrenesulfonate) results in wrapping of the nanotube, while complexation with an electron-accepting oxoanion such as anthraquinone carboxylate allows photoinduced electron transfer from the graphitic wall to the bound guest molecules.  相似文献   

17.
Spherical inverse opal (IO) porous carbon was produced utilizing silica colloidal crystal spheres as templates. The spherical colloidal crystals were obtained through the self-assembly of monodisperse particles inside an emulsion droplet with confined geometry. The templates were inverted using a carbon precursor, phenol-formaldehyde (PF) resol. We demonstrated a two-step synthesis involving the subsequent infiltration of the PF resol precursor into the spherical colloidal crystal template and a one-step synthesis using a silica colloidal solution containing dissolved PF resol. In the former case, the sizes of the IO carbon balls were controlled by the size of the colloidal crystal templates, and diameters of a few micrometers up to 50 μm were obtained. The average diameter of the macropores created by the silica particles was 230 nm. Moreover, meso-/macroporous IO carbon balls were created using block-copolymer templates in the PF resol. In the one-step synthesis, the concentration of PF resol in the colloidal solution controlled the diameter of the IO carbon balls. IO balls smaller than 3 μm were obtained from the direct addition of 5% PF resol. The one-step synthesis produced rather irregular porous structures reflecting the less ordered crystallization processes inside the spherical colloidal crystals. Nitrogen adsorption and cyclic voltammetry measurements were conducted to measure the specific area and electroactive surface area of the IO carbon balls. The specific area of the mesopores-incorporated IO carbon balls was 1.3 times higher than that of bare IO carbon balls. Accordingly, the meso-/macroporous porous carbon balls exhibited higher electrocatalytic properties than the macroporous carbon balls.  相似文献   

18.
A study by X-ray diffraction, gravimetric adsorption, gravimetric and differential thermal analysis and Fourier transform infrared spectroscopy was made of the intercalation compounds which ethyl 2-oxocyclopentanecarboxylate (CBCP) forms with graphitic oxide. The interlamellar disposition of the organic molecule as well as the CBCP/graphitic oxide interaction is also discussed.  相似文献   

19.
Proton plays a critical role in electrochemical systems to control electrochemical reactivity or isotopic enrichment. Graphene is intensively investigated owing to its unique electronic structure and device fabrication. Through the structural tunability of graphitic materials by chemical or physical modification of the surface, graphene is revealed to be an ideal material for proton manipulation. Here, we review the use of graphene or graphitic materials toward the manipulation of proton with regard to the following three points. (1) Electronic properties of graphene: The electronic band structure of graphene can be modified by metal contacts owing to the interaction with a metal surface. (2) Molecular control of graphitic interface: The chemical structure of graphene can be modified, as is done in molecular chemistry, and can be used as a catalytic platform. (3) Proton conduction by graphene: Proton transport through a graphene layer occurs with a unique mechanism such as tunneling. We provide a perspective on the use of graphitic materials toward controlling the behavior of protons on the basis of the aforementioned points. From the above, graphene can be used as a platform for proton manipulation.  相似文献   

20.
用电弧法制备出纳米管及纳米管束,并用高分辨电镜观察其结构.观察到的纳米管管子中空,管壁平行,间距0.34nm,端部封闭;还观察到单层纳米管,洋葱球以及内包晶核的洋葱球结构,纳米管束微结构为纳米管.用扫描电镜观察,为明显的针状晶须,定向排列,晶须互相平行,平行于电场方向生长,晶须直径0.2~0.6mm,长度3~8mm.生成纳米管束的原因可能是由于掺杂碳棒中的杂质提供了晶须生长的晶核.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号