首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present an efficient scheme for sharing an arbitrary two-qubit quantum state with n agents. In this scheme, the sender Alice first prepares an n + 2-particle GHZ state and introduces a Controlled-Not (CNOT) gate operation. Then, she utilizes the n + 2-particle entangled state as the quantum resource. After setting up the quantum channel, she performs one Bell-state measurement and another single-particle measurement, rather than two Bell-state measurements. In addition, except that the designated recover of the quantum secret just keeps two particles, almost all agents only hold one particle in their hands respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis X. Compared with other schemes based on entanglement swapping, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.  相似文献   

2.
We present an efficient and economic scheme for five-party quantum state sharing of an arbitrary m-qubit state with 2m three-particle Greenberger-Horne-Zeilinger (GHZ) states and three-particle GHZ-state measurements. It is more convenient than other schemes as it only resorts to three-particle GHZ states and three-particle joint measurement, not five-particle entanglements and five-particle joint measurements. Moreover, this symmetric scheme is in principle secure even though the number of the dishonest agents is more than one. Its total efficiency approaches the maximal value.  相似文献   

3.
A scheme for quantum state sharing of an arbitrary m-qudit state is proposed with two-qudit entanglements and generalized Bell-state (GBS) measurements. In this scheme, the sender Alice should perform m two-particle GBS measurements on her 2m qudits, and the controllers also take GBS measurements on their qudits and transfer their quantum information to the receiver with entanglement swapping if the agents cooperate. We discuss two topological structures for this quantum state sharing scheme, a dispersive one and a circular one. The former is better at the aspect of security than the latter as it requires the number of the agents who should cooperate for recovering the quantum secret larger than the other one.  相似文献   

4.
We construct several distinct schemes for tripartite Quantum state sharing (QSTS) of arbitrary single- and two-qubit states. Our schemes use genuinely entangled five-qubit state that has recently been introduced by Brown et al. [J. Phys. A 38 1119 (2005)] as the quantum channel. The Bell-state measurements and the single-qubit measurement are needed in our schemes. In comparison with the QSTS scheme using the same quantum channel [Phys. Rev. A 77 (2008) 032321], not joint measurement, which makes this scheme simpler than the latter.  相似文献   

5.
We explicitly present a scheme for quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states as the quantum channel and generalized Bell states as the measurement basis. The scheme succeeds only probabilistically with its total success probability depending on the degree of entanglement matching between the quantum channel and the generalized Bell states. Security of the scheme is guaranteed by the fact that attacks of an outside eavesdropper or/and an inside dishonest party will inevitably introduce detectable errors.  相似文献   

6.
In this paper, we propose a scheme to remotely prepare an arbitrary two-qubit state from one sender to either of two receivers. Two cases of the prepared quantum state, an arbitrary two-qubit state with real coefficients and complex coefficients, are considered. Firstly, one single EPR pair and a GHZ state are used as the quantum channel. Then the present scheme is extended to some partially entangled states as the quantum channel. To design these schemes, some useful and general measurement bases have been constructed. The successful probability and classical communication cost of these schemes are also calculated to weigh the efficiency and cost.  相似文献   

7.
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.  相似文献   

8.
We propose one cavity QED (CQED) scheme for generating an arbitrary 2-level-atom cluster state. Besides, by using a 4-atom cluster state as quantum channel, we propose another CQED scheme for teleporting any unknown two-atom state. In both schemes, the dynamics processes are essentially quite similar. The Rabi frequency of the classical driving field is much bigger than the detuning between the atoms and the cavity. Hence both schemes are insensitive to the cavity decay. The necessary time for implementation is much shorter than the Rydberg-atom lifespan, therefore atom decays do not need to be considered. Moreover, in the teleportation scheme the discrimination of the 16 mutually orthogonal 4-atom cluster states is transformed into the discrimination of single-atom product states, consequently the discrimination difficulty is degraded and the scheme is more easily implemented.  相似文献   

9.
A scheme for probabilistic controlled teleportation of a triplet W state using combined non-maximally entangled channel of two Einstein-Podolsky-Rosen (EPR) states and one Creenberger-Horne-Zeilinger (CHZ) state is proposed. In this scheme, an (m + 2)-qubit CHZ state serves not only as the control parameter but also as the quantum channel. The m control qubits are shared by m supervisors. With the aid of local operations and individual measurements, including Bell-state measurement, Von Neumann measurement, and mutual classical communication etc., Bob can faithfully reconstruct the original state by performing relevant unitary transformations. The total probability of successful teleportation is only dependent on channel coefficients of EPR states and GHZ, independent of the number of supervisor m. This protocol can also be extended to probabilistic controlled teleportation of an arbitrary N-qubit state using combined non-maximally entangled channel of N- 1 EPR states and one (m + 2)-qubit GHZ.  相似文献   

10.
Recently, deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability. In this paper, we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource. Compared with previous schemes, our scheme has high efficiency since less quantum resource is required, some additional unitary operations and measurements are unnecessary. We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.  相似文献   

11.
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.  相似文献   

12.
We propose a new protocol for quantum teleportation of an arbitrary two qubit state via continuous variables entangling channel. In our scheme two pairs of entangled light fields are employed. An outstanding characteristic of this scheme is that arbitrary state of two atoms is transmitted deterministically and directly to another pair of atoms without the help of the other atoms.  相似文献   

13.
基于六粒子纠缠态和Bell态测量的量子信息分离   总被引:2,自引:2,他引:0  
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量;然后控制者执行一次Bell基测量;最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的...  相似文献   

14.
A three-party scheme for securely sharing an arbitrary unknown single-qutrit state is presented. Using a generalized Greenberger-Horne-Zeilinger (GHZ) state as the quantum channel among the three parties, the quantum information (i.e. the qutrit state) from the sender can be split in such a way that the information can be recovered if and only if both receivers collaborate. A generalization of the scheme to multi-party case is also sketched.  相似文献   

15.
孙新梅  查新未  祁建霞  兰倩 《物理学报》2013,62(23):230302-230302
本文提出了一个新的未知量子态共享方案,使用一个非最大纠缠的五粒子Cluster态作为量子通道来实现任意两粒子未知量子态的共享. 即就是发送方(Alice),接收方(Bob)和控制方(Charlie)共享一个非最大纠缠的五粒子Cluster态. 与以前传统方案不同,在本方案中发送方引入一个辅助粒子,并对其手中的粒子进行正交完备基测量,而接收方不需要引入辅助粒子,只需要执行适当的幺正操作,即可以方便的完成信息的顺利接收. 控制方通过对自己手中的粒子做单粒子投影测量来控制和协助通信双方,使得任意两粒子的未知量子态共享方案得以成功实现. 关键词: 量子态共享 五粒子Cluster态 正交完备基测量 单粒子投影测量  相似文献   

16.
We present a controlled teleportation scheme for teleporting an arbitrary superposition state of an M-qudit quantum system. The scheme employs only one entangled state as quantum channel, which consists of the qudits from Alice, Bob and every agent. The quantum operations used in the teleportation process are a series of qudit Bell measurements, single-qudit projective measurements, qudit H-gates, qudit-Pauli gates and qudit phase gates. It is shown that the original state can be restored by the receiver only on the condition that all the agents collaborate. If any agent does not cooperate, the original state can not be fully recovered.  相似文献   

17.
We propose a scheme for splitting an arbitrary two-qubit state among three parties by using a six-qubit cluster-class state as a quantum channel. Based on two Bell-state measurements (BSMs) and a two-qubit projective measurement, any one of the two agents can reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information.  相似文献   

18.
王东  查新未  兰倩  李宁  卫静 《中国物理 B》2011,20(9):90305-090305
In this paper, we propose a controlled quantum state sharing scheme to share an arbitrary two-qubit state using a five-qubit cluster state and the Bell state measurement. In this scheme, the five-qubit cluster state is shared by a sender (Alice), a controller (Charlie), and a receiver (Bob), and the sender only needs to perform the Bell-state measurements on her particles during the quantum state sharing process, the controller performs a single-qubit projective measurement on his particles, then the receiver can reconstruct the arbitrary two-qubit state by performing some appropriate unitary transformations on his particles after he has known the measured results of the sender and the controller.  相似文献   

19.
Two different schemes are presented for quantum teleportation of an arbitrary two-qudit state using a non-maximally four-qudit cluster state as the quantum channel. The first scheme is based on the Bell-basis measurements and the receiver may probabilistically reconstruct the original state by performing proper transformation on her particles and an auxiliary two-level particle; the second scheme is based on the generalized Bell-basis measurements and the probability of successfully teleporting the unknown state depends on those measurements which are adjusted by Alice. A comparison of the two schemes shows that the latter has a smaller probability than that of the former and contrary to the former, the channel information and auxiliary qubit are not necessary for the receiver in the latter. Supported by the Natural Science Research Project of Shanxi Province (Grant No. 2004A15)  相似文献   

20.
A new application of the W-class state is investigated for quantum state sharing (QSTS) of an arbitrary three-qubit state. We demonstrate that four sets of W-class states can be used to realize the deterministic QSTS of an arbitrary three-qubit state based on the three-qubit von Neumann measurements and the local unitary operations. Our scheme considered here is secure against certain eavesdropping attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号