首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

2.
New mechanisms for the controlled growth of one‐dimensional (1D) metal–organic framework (MOF) nano‐ and superstructures under size‐confinement and surface‐directing effects have been discovered. Through applying interfacial synthesis templated by track‐etched polycarbonate (PCTE) membranes, congruent polycrystalline zeolitic imidazolate framework‐8 (ZIF‐8) solid nanorods and hollow nanotubes were found to form within 100 nm membrane pores, while single crystalline ZIF‐8 nanowires grew inside 30 nm pores, all of which possess large aspect ratios up to 60 and show preferential crystal orientation with the {100} planes aligned parallel to the long axis of the pore. Our findings provide a generalizable method for controlling size, morphology, and lattice orientation of MOF nanomaterials.  相似文献   

3.
Cheng F  Zhao J  Song W  Li C  Ma H  Chen J  Shen P 《Inorganic chemistry》2006,45(5):2038-2044
In this paper, MnO2 nanomaterials of different crystallographic types and crystal morphologies have been selectively synthesized via a facile hydrothermal route and electrochemically investigated as the cathode active materials of primary and rechargeable batteries. Beta-MnO2 nano/microstructures, including one-dimensional (1-D) nanowires, nanorods, and nanoneedles, as well as 2-D hexagramlike and dendritelike hierarchical forms, were obtained by simple hydrothermal decomposition of an Mn(NO3)2 solution under controlled reaction conditions. Alpha- and gamma-MnO2 nanowires and nanorods were also prepared on the basis of previous literature. The as-synthesized samples were characterized by instrumental analyses such as XRD, SEM, TEM, and HRTEM. Furthermore, the obtained 1-D alpha- and gamma-MnO2 nanostructures were found to exhibit favorable discharge performance in both primary alkaline Zn-MnO2 cells and rechargeable Li-MnO2 cells, showing their potential applications in high-energy batteries.  相似文献   

4.
Although thermodynamically metastable, planar defects are often observed in many faceted nanomaterials including nanocrystals, nanorods, and nanowires, even after annealing. These planar defects include contact twins and (intrinsic or extrinsic) stacking faults, and are usually neglected by most analytical models. For example, many bulk metals have the face-centered cubic structure, but small nanocrystals and nanorods of the same material often exhibit various structural and morphological modifications such as single or multiple symmetric twinning, as well as 5-fold cyclic twinning resulting in decahedral and truncated decahedral nanostructures. Presented here is a general analytical model for the investigation of nanomaterials of arbitrary shape, and with any configuration of planar defects. The model is tested for the case of twinning in unsupported gold nanocrystals and nanorods, and is shown to give results in excellent agreement with experimental and computational studies reported in the literature.  相似文献   

5.
A biomolecule-assisted simple technique has been developed for the spontaneous ordering of the Bi2S3 nanorods into snowflakelike superstructures in high yield under microwave-hydrothermal conditions. In this method, glutathione (GSH) is used as both an assembling agent and a sulfur source. By controlling the molar ratio between bismuth nitrate and glutathione as well as the synthetic temperature, several kinds of Bi2S3 one-dimensional nanomaterials such as snowflakelike structures, nanowires constructed of particles, short nanorods, and fine and long nanowires have been controllably synthesized.  相似文献   

6.
本文对合成TiO2一维纳米材料及其有序纳米阵列的阳极氧化法、模板法以及水热法进行了全面而系统的评述,着重介绍了它们的最新研究进展。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑TiO2纳米结构及其在纳米器件上的应用;与多种制备技术如溶胶-凝胶工艺、电化学沉积以及原子层沉积等相结合,模板法可以合成出多种形貌的TiO2纳米材料如纳米管、纳米线和纳米棒,并且可以通过改变所用模板的微观尺寸来调控TiO2一维纳米材料及其有序阵列的微结构参数;水热合成法可以制备出直径小且比表面积大的TiO2纳米管粉末。从目前来看,该法还不能制备出牢固负载于基体上的有序纳米阵列。文章最后指出了TiO2一维纳米材料及其有序纳米阵列合成中存在的问题及今后发展方向。  相似文献   

7.
Rapid synthesis of gold nanorods of controlled dimensions is one of the desired aspects of nanotechnology as a result of the potential of these nanomaterials for biomedical applications. The synthesis of gold nanorods has been achieved using a photoinitiator as an instant source of ketyl radicals, which allows the synthesis of gold nanorods in minutes. This is the first report providing a one-step synthesis of nanorods of controlled dimensions in 20-30 min using photoinitiator I-2959 as a source of ketyl radicals. Furthermore, the role of UV intensity, the concentration of silver ions, and the presence of cosolvents and a cosurfactant have been studied in detail in an effort to produce nanorods with controlled dimensions in higher yields. The role of acetone in nanorod synthesis has been explored in detail, and it has been demonstrated that, for the photochemical synthesis of nanorods using a photoinitiator, acetone is not a critical component and can be replaced by other water-miscible solvents, thus the successful synthesis of nanorods in tetrahydrofuran (THF) has been demonstrated. It has also been found that a cosurfactant and an organic solvent are not required for the synthesis of nanorods; however, their presence is found to improve the monodispersity of nanorod samples, in addition to providing a higher yield.  相似文献   

8.
In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets.  相似文献   

9.
The Bi(2)S(3) nanomaterials with various morphologies such as nanorods, nanowires, nanowire bundles, urchin-like microspheres and urchin-like microspheres with cavities have been successfully synthesized through a simple hydrothermal method. Experimental results indicate that sulfur sources play crucial roles in determining the morphologies of Bi(2)S(3) products. Moreover, formation mechanisms of different Bi(2)S(3) nanostructures are discussed based on understanding of the growth habit of Bi(2)S(3) crystal. Finally, we also studied the morphologies-dependent electrochemical and optical properties of the as-synthesized Bi(2)S(3) nanomaterials.  相似文献   

10.
We report on a simple route for the production of uniform and ultra narrow wurtzite CdS nanowires and nanorods. The nanorods are medium friendly (can exist in organic and aqueous phase) thus making them flexibly suitable for various applications. The centimeter range switchable ordering of the nanowires/rods into 3D microstrings by application of low magnitude DC electric field simply via two graphite electrodes is demonstrated. More sophisticated electrodes can be used for the same system to achieve more complex and fine patterns that can find potential use in nanoelectronics. The aligned microstrings (also wires/rods) show strong polarization dependence along their long axes. The polarized emission with respect to the unique c-axis makes the system suitable for orientation sensitive devices.  相似文献   

11.
本文对合成TiO2一维纳米材料及其有序纳米阵列的阳极氧化法、模板法以及水热法进行了全面而系统的评述,着重介绍了它们的最新研究进展。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑TiO2纳米结构及其在纳米器件上的应用;与多种制备技术如溶胶-凝胶工艺、电化学沉积以及原子层沉积等相结合,模板法可以合成出多种形貌的TiO2纳米材料如纳米管、纳米线和纳米棒,并可以通过改变所用模板的微观尺寸来调控TiO2一维纳米材料及其有序阵列的微结构参数;水热合成法可以制备出直径小且比表面积大的TiO2纳米管粉末。但从目前看来,该法还不能制备出牢固负载于基体上的有序纳米阵列。文章最后指出了TiO2一维纳米材料及其有序纳米阵列合成中存在的问题及今后发展方向。  相似文献   

12.
钒氧化物由于其特殊的层状结构和接近室温下的热致相变性质,其纳米结构材料在电化学、催化、光信息存储、光致变色等领域的应用受到越来越多的关注。本文总结了不同维度(包括零维、一维和二维)钒氧化物纳米材料的主要制备方法(水热-溶剂热法、溶胶-凝胶法、反应溅射法等)及其形成机理,并对今后的研究工作进行了展望。  相似文献   

13.
In the science and engineering communities, the nanoscience revolution is intensifying. As many types of nanomaterials are becoming more reliably synthesized, they are being used for novel applications in all branches of nanoscience and nanotechnology. Since it is sometimes desirable for single nanomaterials to perform multiple functions simultaneously, multicomponent nanomaterials, such as core-shell, alloyed, and striped nanoparticles, are being more extensively researched. Nanoscientists hope to design multicomponent nanostructures and exploit their inherent multiple functionalities for use in many novel applications. This review highlights recent advances in the synthesis of multisegmented one-dimensional nanorods and nanowires with metal, semiconductor, polymer, molecular, and even gapped components. It also discusses the applications of these multicomponent nanomaterials in magnetism, self-assembly, electronics, biology, catalysis, and optics. Particular emphasis is placed on the new materials and devices achievable using these multicomponent, rather than single-component, nanowire structures.  相似文献   

14.
The recent development of 1D nanomaterials of controllable size, composition, and structure has opened up enormous possibilities for engineering catalysts with enhanced activity and selectivity. Herein, we report a one-step strategy for the fabrication of versatile silver nanomaterials. Tailored structures, such as nanobelts, nanowires, and nanocables, were conveniently synthesized by adjusting the reaction conditions. The novelty of this synthesis is in a one-pot procedure that combines the sequential formation of precursor nucleation, in situ polymerization, and crystal shaping under mild conditions. The as-synthesized cables consisted of a metallic core (Ag) and an organic outer shell (poly(o-anisidine), POA). Control experiments demonstrated that the introduced organic monomer (OA) not only acted as the nanoreactor and capping agent, but also a modest reducer for controlled crystal growth at the hydrophilic interface. Electrocatalytic tests showed enhanced stability and activity towards the reduction of oxygen, which was believed to be closely associated with the core-shell structural characteristics of the nanomaterials. Their electrocatalytic performance and tunable structure makes such silver nanobelts promising candidates for applications in catalysis and as sensors in nanoelectrochemical devices.  相似文献   

15.
Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.  相似文献   

16.
Of the methods employed in the preparation of one-dimensional lanthanide phosphate (LnPO(4)) nanorods/nanowires, such as GdPO(4), the hydrothermal method has been mainly used as a synthetic route. In this study, we report a facile low-temperature solution approach to prepare GdPO 4*H(2)O nanorods by simply refluxing GdCl(3) and KH(2)PO(4) for only 15 min at 88 degrees C, an approach that can easily be scaled up by increasing the reagent amounts. We observed a highly viscous macroscopic hydrogel-like material when we mixed as-prepared GdPO(4)*H(2)O nanomaterials with H(2)O. Hydrogels are an important class of biomaterials. Their building blocks, normally formed from protein-, peptide-, polymer-, and lipid-based materials, offer three-dimensional scaffolds for drug delivery, tissue engineering, and biosensors. Our preliminary results showed that GdPO(4)*H(2)O hydrogels could be used for encapsulation and drug release, and that they were biocompatible, acting as scaffolds to foster cell proliferation. These findings suggested that they might have biomedical uses. Our findings may lead to the creation of other inorganic nanomaterial-based hydrogels apart from the organic and biomolecular protein-, peptide-, polymer-, and lipid-based building blocks.  相似文献   

17.
本文综述了溶剂热法制备一系列碳化硅纳米材料的研究,包括一维纳米线、纳米带、纳米棒、二维纳米片及空心球等;同时,碳源过量时可形成碳包覆碳化硅的复合材料。使用废塑料作为碳源合成了碳化硅纳米材料,为废塑料的回收再利用提供了新途径。通过使用碘、硫等添加剂,有效降低了合成温度,显示出溶剂热技术在制备碳化硅方面的独特优势。  相似文献   

18.
Heats of solution of pyridine (PY) over a range of compositions of methanol-acetonitrile (MeOH-AN) mixed solvents are measured at 298.15 K by calorimetry. Standard enthalpies of transferring PY from MeOH into its mixtures with AN are calculated from the obtained data. It is established that upon moving from methanol to acetonitrile, the solvation of PY becomes less exothermic, and marked changes in the energetics of amine solvation are observed at mole fraction ζAN = 0.8–1.0. It is shown that pyridine resolvates in the given range of mixed solvent compositions, predominantly through resolvation of the nitrogen atom in the amine group as a result of a considerable increase in the basicity of the mixed solvent. It is established that in the 0.0–0.8 range of AN mole fractions, PY molecules are predominantly solvated by MeOH molecules.  相似文献   

19.
本文综述了溶剂热法制备一系列碳化硅纳米材料的研究,包括一维纳米线、纳米带、纳米棒、二维纳米片及空心球等;同时,碳源过量时可形成碳包覆碳化硅的复合材料。使用废塑料作为碳源合成了碳化硅纳米材料,为废塑料的回收再利用提供了新途径。通过使用碘、硫等添加剂,有效降低了合成温度,显示出溶剂热技术在制备碳化硅方面的独特优势。  相似文献   

20.
Making large-scale, multifunctional, paper-like, free-standing membranes (FSM) and the FSM-based 3D macroscopic devices purely from long inorganic functional nanowires is challenging in many nanomaterials systems. Here we report synthesis of long nanowires of the catalytic titanate for direct fabrications of the FSM and the FSM-based 3D devices that are among the first to show unusual potentials in photocatalysis, write-erase-rewrite, microfiltration, and controlled release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号