首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sol–gel nanocomposite coatings were fabricated by spraying precursor mixtures containing hydrophobically modified silica (HMS) nanoparticles dispersed in sol–gel matrices prepared with acid-catalyzed tetraethoxysilane (TEOS), and methyltriethoxysilane (MTEOS). The hydrophobicity of the coatings increased with increase in the concentration of HMS nanoparticles. Superhydrophobic coatings with water contact angle (WCA) of 166° and roll-off angle <2° were obtained by optimizing the sol–gel processing parameters and the concentration of silica nanoparticles in the coating. FESEM studies have shown that surface has a micro-nano binary structure composed of microscale bumps and craters with protrusions of nanospheres. The properties of composite coatings fabricated by spin coating and spray coating methods were compared. It was found that the microstructure and the wettability were also dependent on the method of application of the coating.  相似文献   

2.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

3.
The effect of a low-molecular-mass salt on the properties of interpolyelectrolyte complexes formed as a result of interactions between poly(diallyldimethylammonium chloride) and copolymers of maleic acid with propylene or α-methylstyrene in their salt containing non-stoichiometric mixtures has been studied. Properties of such interpolyelectrolyte complexes were found to be determined by the chemical nature of the polyelectrolytes and by the salt concentration. The effect of salt on the surface modification of silica particles via their interactions with interpolyelectrolyte complexes has been examined. Two different ways of the surface modification of silica particles were used: (i) silica particles were contacted with previously prepared interpolyelectrolyte complexes and (ii) silica particles were contacted with cationic polyelectrolyte at first and then anionic polyelectrolyte was added. The efficiency of the surface modification was shown to be also dependent on the salt concentration and the chemical nature of polyelectrolytes. Turbidimetry, quasi-elastic light scattering, laser microelectrophoresis, and polyelectrolyte titration were used to characterize studied systems.  相似文献   

4.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   

5.
Cationic polyelectrolytes were synthesized and used as semipermanent coating materials for capillaries in electrophoresis. The polyelectrolytes used were a homopolymer of poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its poly(ethylene glycol) (PEG)‐grafted analogue. Two PMOTAC polyelectrolytes, with molar masses of 85,000 and 300,000 g/mol, and PEG‐grafted PMOTAC with a molar mass of 280,000 g/mol were synthesized and then characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. Attachment of the polyelectrolytes to the wall of the fused silica capillary for electrophoresis caused the electroosmotic flow (EOF) to reverse. The polyelectrolyte coatings were tested over the pH range 2–11 at different buffer ionic strengths, and the most stable and strongest anodic EOFs were obtained at acidic pH values with low ionic strength buffers. Between runs the capillary is merely rinsed for 2 or 3 min with the background electrolyte solution. With the PMOTAC coatings at pH values ≤5, the RSDs of the EOFs were less than 2.9% after 60 injections. The effects of the molar mass of the polycation and of PEGylation of PMOTAC on the interactions between the polycations and basic proteins were studied at acidic pH values. The differences in the effective electrophoretic mobilities, resolution values, and plate numbers of the proteins with the different coatings were due to the EOF, as demonstrated through calculations of reduced mobilities, relative resolution values, and relative plate numbers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2655–2663, 2007  相似文献   

6.
There has been significant interest in the crystallization of nanostructured silica into α‐quartz because of its physicochemical properties. We demonstrate a single‐crystalline mesoporous quartz superlattice, a silica polymorph with unprecedentedly ordered hierarchical structures on both the several tens of nanometers scale and the atomic one. The mesoporous quartz superlattice consists of periodically arranged α‐quartz nanospheres whose crystalline axes are mostly oriented in an assembly. The superlattice is prepared by thermal crystallization of amorphous silica nanospheres constituting a colloidal crystal. We found that the deposition of a strong flux of Li+ only on the surface of silica nanospheres is effective for crystallization.  相似文献   

7.
Polyelectrolytes are widely used in capillary electrophoresis as coating agents of silica capillaries to prevent adsorption phenomena and improve the repeatability of peptide and protein analysis. A systematic study of the coating experimental conditions has been carried out to optimize coating stability and performance. The main experimental parameters studied were the type and concentration of polyelectrolytes used in several monolayer and multilayer coatings, the ionic strength of coating and stabilizing solutions, and the procedures used for coating and capillary storage. Electroosmotic flow magnitude, direction and repeatability were used to monitor coating stability. Coating ability to limit adsorption was investigated by monitoring variations of migration times, time-corrected peak areas and separation efficiency of test peptides. Capillary-to-capillary and batch-to-batch reproducibility was also studied. In addition, the separation performance of polyelectrolyte coatings were compared to those obtained with bare silica capillaries.  相似文献   

8.
以L-亮氨酸为手性源合成了手性阳离子两亲性小分子化合物L-18Leu6NEtBr,用其自组装体作为模板,氢氧化钠为催化剂,经溶胶-凝胶过程制备出介孔二氧化硅纳米空心球;分析了介孔二氧化硅纳米空心球的尺寸和孔径.结果表明,所制备的二氧化硅空心球直径约100nm;其介孔孔道平行于壳表面,孔径为3.1nm.  相似文献   

9.
A NOVEL METHOD TO PREPARE CROSSLINKED POLYETHYLENEIMINE HOLLOW NANOSPHERES   总被引:1,自引:0,他引:1  
A novel method to prepare crosslinked polyethyleneimine(CPEI)hollow nanospheres was reported.Uniform silica nanospheres were used as templates,3-aminopropyl trimethoxysilane(APS)was immobilized on the surface of silica nanospheres as couple agent.Aziridine was initiated ring-opening polymerization with the amino groups in APS to form polyethyleneimine(PEI)shell layer.1,4-Butanediol diacrylate was utilized to crosslink PEI polymeric shell.The silica nanospheres in core were etched by hydrofluoric acid to obtain hollow CPEI nanospheres.The hollow nanospheres were characterized by X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),and thermogravimetric analysis(TGA).  相似文献   

10.
Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes.  相似文献   

11.
A facile method for the preparation of silica/silicone nanofilament hybrid coatings with almost perfect superhydrophobicity (contact angle=179.8° and sliding angle=1.3°) is presented. The coatings are obtained by dip‐coating of silica nanoparticles, followed by chemical vapor deposition of silicone nanofilaments. Predominant growth of silicone nanofilaments onto aggregated silica nanoparticles generates a two‐tier structure. The effect of silica nanoparticle size on the growth of silicone nanofilaments, along with their anti‐wetting properties and transparency are investigated in detail. Surface roughness and anti‐wetting properties can be simply regulated by controlling the size of silica nanoparticles.  相似文献   

12.
Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings, demonstrating their effectiveness against protein adsorption. The AFM results are consistent with earlier obtained CE data obtained for proteins using the same polyelectrolyte coatings.  相似文献   

13.
The adsorption of polyelectrolyte (PE) multilayers and complexes, obtained from both high- and low-charge polyelectrolytes, was studied on silica and on cellulose model surfaces by quartz crystal microbalance with dissipation (QCM-D). The film properties acquired with the different strategies were compared. When polyelectrolytes were added on an oppositely charged surface in sequence to form multilayers both the change in frequency and dissipation increased. The changes in frequency and dissipation were clearly higher if low-charge PEs were used in the multilayer formation. The substrate, silica or cellulose, did not affect the adsorption behaviour of low-charge PEs and only minor differences were seen in the adsorbed amounts and changes in dissipation of high-charge PEs between SiO2 and cellulose. The complexes formed by low-charge PEs had higher changes in frequency and dissipation at low ionic strength on both surfaces, while the complexes formed from high-charge polyelectrolytes adsorbed more at high salt concentration. The complexes of low-charge polyelectrolytes adsorbed more on silica, while the complexes formed by high-charge PEs formed thicker layers on cellulose. The charge ratio had a significant effect on the adsorption and the highest changes in frequency and dissipation were obtained in the anionic/cationic charge ratio of 0.5–0.6. Generally, the multilayers and complexes formed by low-charge polyacrylamides adsorbed highly and formed rather thick layers on both surfaces, unlike the high-charge PEs which formed thin layers using either one of the addition techniques.  相似文献   

14.
Recently, magnetic silica-based nanospheres have received great attention and displayed magnificent potential for bioimaging and therapeutic purposes. This study provided a way to accelerate drug release from magnetic-sensitive silica nanospheres by controlled bursting to a therapeutically effective concentration by a high-frequency magnetic field (HFMF). The magnetic-sensitive silica nanospheres were synthesized by an in situ process, with particle sizes about 50 nm and able to release specific amounts of drug in a burst manner via short exposure to a HFMF. The HFMF accelerates the rotation of magnetic nanoparticles deposited in the silica matrix with generated heat energy and subsequently enlarges the nanostructure of the silica matrix to produce porous channels that cause the drug to be released easily. By taking these magnetic-responsive controllable drug release behaviors, the magnetic silica nanospheres can be designed for controlled burst release of therapeutic agents for especially urgent physiological needs.  相似文献   

15.
Coatings based on sol-gel technology with different types of nanoparticles embedded into the sol-gel matrix were fabricated, and the resulting properties were investigated. Pyrogenic silica nanoparticles were added to the sol before coating. The silica particles varied in primary particle size and agglomerate size, and in their surface modification. The particles were wetted in ethanol and dispersed to certain finenesses. The difference in agglomerate size was partly caused by varying particle types, but also by the dispersing processes that were applied to the particles. The resulting coatings were examined by visual appearance and SEM microscopy. Furthermore, their micromechanical properties were determined by nanoindentation. The results show an important influence from the added nanoparticles and their properties on the visual appearance as well as the micromechanical behavior of the sol-gel coatings. It is shown that, in fact, the particle size distribution can have a major impact on the coating properties as well as the surface modification.  相似文献   

16.
[Ru(bpy)3]2+-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers. Moreover, factors that affected the assembly and ECL signals were investigated. The decrease in ECL could be assigned to steric hindrance and limited diffusion of the coreactant molecules in the silica matrix after they were attached to the biomolecules. Since surface modification of the RuSi nanoparticles can improve their biocompatibility and prevent leaking of the [Ru(bpy)3]2+ ions, the RuSi nanoparticles can be readily used as efficient and stable ECL tag materials in immunoassay and DNA detection.  相似文献   

17.
以双酚A为模板分子,3-氨基丙基乙氧基硅烷为功能单体,通过溶胶-凝胶反应合成双酚A分子印迹纳米硅胶微球。以印迹微球为固相萃取吸附剂,优化固相萃取条件,确定二氯甲烷为上样溶剂。固相萃取选择性实验表明,在双酚A及其结构类似物四溴双酚A、双酚C、壬基酚的混合物溶液中,印迹萃取柱对双酚A具有良好的选择性能,回收率达到90.7%。浓度为2.5和5μmol/L的加标罐装食品样品,经印迹萃取柱预处理,液相色谱检测得到回收率72%~84%,相对标准偏差2.9%~4.4%。  相似文献   

18.
阎虎生 《高分子科学》2013,31(2):294-301
Single-hole hollow polymer nanospheres were fabricated by raspberry-like template method using "graft-from" strategy through atom transfer radical polymerization (ATRP). Nanometer-sized silica spheres were covalently attached onto the surfaces of micrometer-sized silica spheres. Crosslinked polymer shells on the nano-sized spheres outside the attached area were formed by "graft-from" strategy through ATRP. After removal of the silica cores, single-hole hollow crosslinked polymer nanospheres were obtained. In this strategy, most of ATRP monomers may be used and thus many functional groups can be easily incorporated into the single-hole hollow crosslinked polymer nanospheres.  相似文献   

19.
Silica nanobottles templated from functional polymer spheres   总被引:2,自引:0,他引:2  
Nanosized hollow silica spheres with holes in the wall (denoted as silica nanobottles) have been successfully prepared by assembly of functional polymer nanospheres with tetraethoxysilane (TEOS) through hydrothermal methods, coupled with removal of the core by programmed calcination. The functional polymer nanospheres were obtained by emulsifier-free emulsion copolymerization of styrene and (ar-vinylbenzyl) trimethylammoium chloride. The silica nanobottle sample was characterized by thermogravimetric analysis (TG), differential thermal analysis (DTA), transmission electron microscopy (TEM), and nitrogen adsorption techniques. The above characterizations confirm that the silica nanobottles have holes of about 8 nm in the wall and this unique structural feature might be useful for their encapsulation. Furthermore, characterization by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and UV-visible absorption (UV-vis) showed that the luminescent material Eu(TTA)(3)(TPPO)(2) could be effectively encapsulated in silica nanobottles. This reveals that silica nanobottles have potential applications for nanotechniques.  相似文献   

20.
Titania embedded silica hollow nanospheres were synthesized from sonication-mediated etching and re-deposition of silica/titania core/shell nanospheres. The designed structure of the hollow nanospheres was proved to be a key factor for the charge trapping/detrapping and resulting bistability in non-volatile organic bistable memory devices (OBDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号