首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with “CM-biomimetic peptides” on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0–400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.  相似文献   

2.
《印度化学会志》2021,98(10):100176
Cancer is one of the most critical health burdens with leading causes of death worldwide. Homeopathy is one of the complementary and alternative therapies, which utilizes venoms and toxins in ultra-high dilutions for therapeutics. In the present investigation, we used the homeopathy Lachesis 200C drug to study anticancer activity on the mouse fibroblast cells [L929], human prostate cancer cells [PC3], and in chick embryo model. Treating with Lachesis 200C showed 91.10% and 37.47% reduction in cell viability in L929 and PC3 respectively as compared to control by MTT assay. In the chick embryo model Lachesis 200C (dose of 50% and 100%) treatment resulted in antiangiogenic activity as compared to the control group. There was an antiproliferative and cytotoxic activity of Lachesis 200C in PC3 and L929 ​cell lines. Lachesis 200C inhibited the growth of PC3 cells. In the in vivo studies, Lachesis 200C treated chicks showed a significant decrease in or complete disappearance of blood vessels from chorioallantoic membrane (CAM) areas compared to control. The findings indicate that the level of angiogenesis was dramatically decreased by Lachesis 200C. Lachesis 200C showed the potential to act as an anticancer agent. Further studies with Lachesis200 could lead to a potential anticancer agent.  相似文献   

3.
Kim MJ  Lee SC  Pal S  Han E  Song JM 《Lab on a chip》2011,11(1):104-114
Drug-induced cardiotoxicity or cytotoxicity followed by cell death in cardiac muscle is one of the major concerns in drug development. Herein, we report a high-content quantitative multicolor single cell imaging tool for automatic screening of drug-induced cardiotoxicity in an intact cell. A tunable multicolor imaging system coupled with a miniaturized sample platform was destined to elucidate drug-induced cardiotoxicity via simultaneous quantitative monitoring of intracellular sodium ion concentration, potassium ion channel permeability and apoptosis/necrosis in H9c2(2-1) cell line. Cells were treated with cisapride (a human ether-à-go-go-related gene (hERG) channel blocker), digoxin (Na(+)/K(+)-pump blocker), camptothecin (anticancer agent) and a newly synthesized anti-cancer drug candidate (SH-03). Decrease in potassium channel permeability in cisapride-treated cells indicated that it can also inhibit the trafficking of the hERG channel. Digoxin treatment resulted in an increase of intracellular [Na(+)]. However, it did not affect potassium channel permeability. Camptothecin and SH-03 did not show any cytotoxic effect at normal use (≤300 nM and 10 μM, respectively). This result clearly indicates the potential of SH-03 as a new anticancer drug candidate. The developed method was also used to correlate the cell death pathway with alterations in intracellular [Na(+)]. The developed protocol can directly depict and quantitate targeted cellular responses, subsequently enabling an automated, easy to operate tool that is applicable to drug-induced cytotoxicity monitoring with special reference to next generation drug discovery screening. This multicolor imaging based system has great potential as a complementary system to the conventional patch clamp technique and flow cytometric measurement for the screening of drug cardiotoxicity.  相似文献   

4.
Nowadays locoregional therapy for cancer treatment can be associated with nanocomposite drug delivery systems. Coated nanoparticles have versatile applications for delivering chemotherapeutic drugs to the targeted part of the body. In this study, a ceramic carrier like nanosized hydroxyapatite (HAp) was synthesized by the in situ precipitation method followed by coating with anticancer drug like doxorubicin (DOX) and polyvinyl alcohol (PVA) polymer. The physicochemical characterization of the prepared polymer-coated drug ceramic nanocomposite (DOX-HAp-PVA) was carried out using Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron spectroscopy, and particle size distribution. Furthermore, the biocompatibility and the anticancer activity of the nanocomposite were explored by MTT assay study. Successfully synthesized DOX-HAp-PVA nanocomposite exhibited a remarkable cytotoxicity toward osteosarcoma cells (MG 63), which may be potentially used as an anticancer agent against osteosarcoma.  相似文献   

5.
We report in this study the effects of red-emitting CdTe QDs capped with cysteamine(Cys-CdTe) on the in vitro anticancer activity of the well-known flavenoid quercetin(Qu). Various techniques, including the methylthiazolyldiphenyl-tetrazolium bromide assay, the real-time cell electronic sensing system, the optical and fluorescence imaging, and electrochemical methods have been utilized to study the potential interactions of Cys-CdTe QDs with Qu. The observations demonstrate that the safe-dosage Cys-CdTe QDs can greatly improve the drug uptake and enhance the inhibition efficiency of Qu towards the proliferation of cancer cells such as HepG2 cells. This study implies that Cys-CdTe QDs may be used for cancer therapy and that they exert a synergic anticancer effect when bound to drug molecules.  相似文献   

6.
In order to limit the side effects associated with antitumor drugs such as doxorubicin, nanosized drug‐delivery systems capable of selectively delivering and releasing the drug in the diseased tissue are required. We describe nanoparticles (NPs), self‐assembled from a reduction responsive amphiphilic peptide, capable of entrapping high amounts of a redox active anticancer drug candidate and releasing it in presence of a reducing agent. This system shows a high entrapment efficiency with up to 15 mg drug per gram of peptide (5.8 mol‐%). Treatment of the NPs with reducing agent results in the disassembly of the NPs and release of the drug molecules. A reduction in cell viability is observed at drug concentrations above 250 nm in HEK293T and HeLa cell lines. This drug delivery system has potential for targeting tumor sites via the EPR effect while taking advantage of the increased reduction potential in tumor microenvironment.  相似文献   

7.
Chen Z  Song T  Peng Y  Chen X  Chen J  Zhang G  Qian S 《The Analyst》2011,136(19):3927-3933
A novel assay has been developed to detect the interaction of DNA and anticancer drugs based on the decreased resonance light scattering (RLS) technique. The proposed method can be used to study those drugs which do not produce a RLS-signal after binding to DNA. RLS was used to monitor the interaction of five anticancer drugs with DNA. The reaction between anticancer drugs and DNA took place in BR buffer solution. From the RLS assay, the sequence of five anticancer drugs activities was as follows: CTX < MTX < Pt < MMC < 5-Fu. Mammary cancer cell DNA (mcDNA) was involved to validate the RLS assay. The results showed that the sensitivities of the five anticancer drugs targeting both mcDNA and ctDNA increased in the same order. However the sensitivity of each drug to mcDNA was higher than that to ctDNA It is a significant innovation of the RLS method to detect the interaction of DNA and anticancer drugs and to obtain drug sensitivity, which provides new strategies to screen DNA targeted anticancer drugs.  相似文献   

8.
Background: Despite advancements in cancer treatment, breast cancer (BC) is still one of the leading causes of death among women. The majority of anti-breast-cancer medications induce serious side effects and multidrug resistance. Although several natural compounds, such as evening primrose oil (EPO), have been shown to have anticancer properties when used alone, their combination with the anticancer medicine tamoxifen (TAM) has yet to be investigated. The present study aimed to investigate the anticancer efficacy of EPO, alone or in combination with TAM, in the BC cell lines MCF-7 and MDA-MB-231, as well as to elucidate the mechanism of action. Methods: The MTT assay was used to investigate the cytotoxic effect of EPO on the two cell lines, and we discovered an acceptable IC50 that was comparable to TAM. The ELISA, qRT-PCR, flow cytometry and colorimetric techniques were used. Results: The combination of EPO and TAM suppressed the VEGF level, VEGF gene expression and Cyclin D1 signaling pathways, arrested the cell cycle, and induced the apoptotic signaling pathways by increasing the Bax/Bcl-2 ratio and caspase 3 activity; this revealed significant anti-tumor activity. Conclusions: The most significant finding of this study was the confirmation of the anticancer activity of the natural product EPO, which potentiated the activity of the anticancer drug TAM against MCF-7 and MDA-MB-231 BC cell lines through the induction of apoptosis, inhibiting angiogenesis and halting cell proliferation.  相似文献   

9.
Li X  Huang J  Tibbits GF  Li PC 《Electrophoresis》2007,28(24):4723-4733
A microfluidic method for real-time quantitative measurement of cellular response pertaining to drug discovery is reported. This method is capable of multiple-step liquid delivery for measuring the drug response of a single cardiomyocyte, due to the improved cell retention by a newly designed chip. The chip, which consists of a cell-retention chamber with a weir structure, was fabricated just by a one-photomask microfabrication procedure followed by on-chip etching. This method differs from the conventional method, which uses two-mask photolithography to fabricate the microchannel (deep etch) and the weir structure (shallow etch). The dimensions of the weir structure have been predicted by a mathematical model, and confirmed by confocal microscopy. Using this microfluidic method, the dynamic [Ca2+]i mobilization in a single cardiomyocyte during its spontaneous contraction was quantified. Furthermore, we measured the cellular response of a cardiomyocyte on (i) a known cardiotonic agent (caffeine), (ii) a cardiotoxic chemotherapeutic drug (daunorubicin), and (iii) an herbal anticancer drug candidate - isoliquiritigenin (IQ) based on the fluorescent calcium measurement. It was found that IQ had produced a less pronounced effect on calcium mobilization( )of the cardiomyocytes whereas caffeine and daunorubicin had much stronger effects on the cells. These three experiments on cardiomyocytes pertaining to drug discovery were only possible after the improved cell retention provided by the new chip design (MV2) required for multiple-step real-time cellular analysis on a microchip, as compared with our old chip design (MV1).  相似文献   

10.
Previously, cancer chemotherapy was often accompanied by severe side effects. Antibody drug conjugates (ADCs) were introduced to address this treatment complication. ADCs are a potent category of bioconjugates and immunoconjugates designed as targeted therapy for the treatment of cancer. ADCs are complex molecules composed of an antibody linked via linker chemistry to a cytotoxic payload or drug. Therefore, biologic properties of the cell‐surface target antigen are important in designing an effective ADC as an anticancer agent. ADCs have the ability to discriminate between the healthy and diseased tissue, so that healthy cells are less effected and get maximum therapeutic benefit. This review describes the development, characterization, and regulatory consideration of ADCs, and it summarizes the approved products in the market and in clinical trials.  相似文献   

11.
Xie F  Xu Y  Wang L  Mitchelson K  Xing W  Cheng J 《The Analyst》2012,137(6):1343-1350
Nephrotoxicity is one of the major concerns for anticancer drug safety because most drugs are metabolized and excreted by the kidneys. Convenient tools able to perform rapid in vitro cytotoxicity analysis and identify drug side effects in kidney cells during early phases of drug discovery could be beneficial to drug development programs. Here we developed an electrical cell-substrate impedance sensing system (ECIS) capable of continuously measuring the dosage and time response of human proximal tubular epithelial (HK2) cells exposed to four drugs throughout the experimental period. These drugs induced HK2 cell apoptosis/death in a dose-dependent manner, although with very different dose-response effects. DDP (50 μM) was the most cytotoxic and induced obvious HK2 cell apoptosis rapidly after exposure. The other three drugs had much lower cytotoxicity, even at concentrations approaching 1 mM. The results obtained from our ECIS system correlated well with conventional in vitro assays such as flow cytometry and cell viability assays. Notably, the continuous and automatic measurements provided by ECIS system allow for better resolution for drugs with different temporal toxicity profiles. Furthermore, we investigated the effect of DDP's antidotes, glutathione and sodium subsulfite, on DDP-induced cytotoxicity, both of which decreased nephrotoxicity of DDP in a dose-dependent manner. Overall this study illustrates the convenience of ECIS for direct, continuous assessment of the cytotoxicity of anticancer drugs in vitro. ECIS has the potential to become a useful, non-invasive analytical method for early evaluation of drugs and antidotes of toxins.  相似文献   

12.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

13.
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells’ surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.  相似文献   

14.
Background/AimMain objective of this study is mapping of the anticancer efficacy of synthesized gallic acid analogues using modeling and artificial intelligence (AI) over a large range of concentrations and exposure times to explore the underline mechanisms of drug action and draw careful inferences regarding drug response heterogeneity.MethodsTwo series of gallic acid derivatives i.e. esters and amides have been synthesized and characterized by FTIR, NMR and mass spectrometry. The compounds have been tested in vitro for their anticancer activity against wild type human ovarian cancer cell line A2780, prostate cancer cell line PC3 and normal human fibroblast cells 3T3. To completely characterize optimal anticancer activity, a comprehensive model using piecewise recursive Hill model is used to quantitatively assess the in vitro anticancer effect of the tested compounds as a function of concentration and exposure time for periods ranging from 24 to 72 h. A robust artificial intelligence approach i.e. the “Support Vector Machine (SVM) Learning Algorithm” is adopted to utilize the data obtained at different temporal values, to identify compounds that trail forecasting algorithm.ResultsAll the synthesized analogues were found biocompatible. Significantly low EC50 values indicated that tested compounds have potent anticancer activity against A2780 cell line in comparison to PC3 cells where only few compounds generated same impact at almost 200 times high dose. On the basis of EC50 values, compounds 7 h, 7 m, 9c, 9b, 7c, 7b and 7 g were identified as the most active anticancer agent against A2780. Three major patterns of drug response heterogeneity were observed for different compounds in the form of multiple Hill graphs and shallow slopes. The anticancer efficiency of the compounds was verified using Machine learning SVM regression learner algorithm. For compounds 7a, 7b, 7e, 7 g, 7o, 7 r, 9b, 9e-9 g higher accuracy was found in predicted and experimentally obtained end point potency in terms of % viability.ConclusionsPharmacodynamics modeling of anticancer potential of the synthesized compounds revealed that drug efficacy and response heterogeneity could be modulated by changing the exposure time to optimize therapeutic impact. Combining experimental results with AI based drug action forecasting, compounds 7b, 7 g, and 9b may be tested further as potent anticancer agent for in vivo studies. This approach may serve a useful tool for extrapolation of in vitro results for generating lead compounds in in vivo and preclinical studies.  相似文献   

15.
Paclitaxel is one of the chemotheraputic drugs widely used for the treatment of nonsmall cell lung cancer (NSCLC) patients. Here, we tested the ability of α-tocopheryl succinate (TOS), another promising anticancer agent, to enhance the paclitaxel response in NSCLC cells. We found that sub-apoptotic doses of TOS greatly enhanced paclitaxel-induced growth suppression and apoptosis in the human H460 NSCLC cell lines. Our data revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor) or z-IETD-FMK (a caspase-8 inhibitor) blocked TOS/paclitaxel cotreatment-induced PARP cleavage and apoptosis, suggesting that TOS potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in H460 cells. Furthermore, the growth suppression effect of TOS/paclitaxel combination on human H460, A549 and H358 NSCLC cell lines were synergistic. Our observations indicate that combination of paclitaxel and TOS may offer a novel therapeutic strategy for improving paclitaxel drug efficacy in NSCLC patient therapy as well as for potentially lowering the toxic side effects of paclitaxel through reduced drug dosage.  相似文献   

16.
Cancer is a major health problem across the globe, and is expeditiously growing at a faster rate worldwide. The endoplasmic reticulum (ER) is a membranous cell organelle having inextricable links in cellular homeostasis. Altering ER homeostasis initiates various signaling events known as the unfolded protein response (UPR). The basic purpose of the UPR is to reinstate the homeostasis; however, a continuous UPR can stimulate pathways of cell death, such as apoptosis. As a result, there is great perturbation to target particular signaling pathways of ER stress. Flavonoids have gained significant interest as a potential anticancer agent because of their considerable role in causing cytotoxicity of the cancerous cells. Luteolin, a flavonoid isolated from natural products, is a promising phytochemical used in the treatment of cancer. The current study is designed to review the different endoplasmic reticulum stress pathways involved in the cancer, mechanistic insights of luteolin as an anticancer agent in modulating ER stress, and the available luteolin patent formulations were also highlighted. The patents were selected on the basis of pre-clinical and/or clinical trials, and established antitumor effects using patent databases of FPO IP and Espacenet. The patented formulation of luteolin studied so far has shown promising anticancer potential against different cancer cell lines. However, further research is still required to determine the molecular targets of such bioactive molecules so that they can be used as anticancer drugs.  相似文献   

17.
There is compelling evidence suggesting that the immune‐modulating effects of many conventional chemotherapeutics, including platinum‐based agents, play a crucial role in achieving clinical response. One way in which chemotherapeutics can engage a tumor‐specific immune response is by triggering an immunogenic mode of tumor cell death (ICD), which then acts as an “anticancer vaccine”. In spite of being a mainstay of chemotherapy, there has not been a systematic attempt to screen both existing and upcoming Pt agents for their ICD ability. A library of chemotherapeutically active Pt agents was evaluated in an in vitro phagocytosis assay, and no correlation between cytotoxicity and phagocytosis was observed. A PtII N‐heterocyclic carbene complex was found to display the characteristic hallmarks of a type II ICD inducer, namely focused oxidative endoplasmic reticulum (ER) stress, calreticulin exposure, and both HMGB1 and ATP release, and thus identified as the first small‐molecule immuno‐chemotherapeutic agent.  相似文献   

18.

Commonly, acquired resistances to anticancer drug are mediated by overexpression of a membrane-associated protein that encode via multi-drug resistance gene-1 (MDR1). Herein, the mRNA-cleaving DNAzyme that targets the mRNA of MDR1 gene in doxorubicin-resistant breast cancer cell line (MCF-7/DR) loaded on the chitosan β-cyclodextrin complexes was used as a tropical agent. Chitosan/β-cyclodextrin complexes were used to deliver DNAzymes into cancer cells. Determination of the physicochemical characteristics of the particles was done by photon correlation spectroscopy and scanning electron microscopy. The encapsulation efficiency of the complexes was tested by using gel retardation assay. Positively charged nanoparticles interacted with DNAzyme that could perform as an efficient DNAzyme transfection system. The rationale usage of this platform is to sensitize MCF-7/DR to doxorubicin by downregulating the drug-resistance gene MDR1. Results demonstrated a downregulation of MDR1 mRNAs in MCF-7/DR/DNZ by real-time PCR, compared to the MCF-7/DR as control. WST1 assay showed the 22-fold decrease in drug resistance on treated cells 24 h after transfection. Results showed the intracellular accumulation of Rh123 increased in the treated cells with DNAzyme. Results suggested a potential platform in association with chemotherapy drug for cancer therapy and indicated extremely efficient at delivery of DNAzyme in restoring chemosensitivity.

  相似文献   

19.
A double stranded DNA based fluorescence bioprobe for anticancer agent (doxorubicin) detection is described. This method provides a new way for sensitive DNA/drug interaction study by a homogeneous assay. The probe employs the long-wavelength intercalating fluorophore TOTO-3® (TT3). The anticancer agent, doxorubicin, which interacts with the DNA-TT3 complex, was indirectly measured by the decrease in the fluorescence intensity. Various oligonucleotides with different sequences were examined. Doxorubicin has preference for the oligonucleotide 5′AGCACG3′. Enhanced fluorescence observed for the TT3 intercalation with this oligonucleotide makes the DNA-dye complex a suitable bioprobe for doxorubicin detection by competitive assay. A home-built CCD camera setup was applied along with 384 well plate assay format for high throughput fluorescence imaging. The detection limit can be as low as 25 ng mL−1 with an upper limit of 100 μg mL−1. The recovery test with spiked serum sample shows that this method can be a potential routine method for therapeutic drug monitoring (TDM).  相似文献   

20.
Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P‐glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT‐11) and a NO‐releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp‐mediated MDR reversal agent. The site‐specific drug release and the NO‐reduced Pgp‐mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell‐killing threshold, eventually inducing its antitumor activity. These results reveal that this pH‐responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号